
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

TRAJECTORY PLANNING FOR THE ARIES AUV

by

John J. Keegan

June 2002

 Thesis Advisor: Anthony J. Healey

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Trajectory Planning for the ARIES AUV
6. AUTHOR(S) John J. Keegan

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research, 800 N. Quincy St., Arlington, VA 22217-
5660

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
This thesis supports ongoing ONR research in the area of Autonomous Underwater Vehicles (AUVs) and Mine
Warfare. It shows a simulation of a two-vehicle autonomous rendezvous using both along track and cross track
position controllers. Conducting open water experiments with the ARIES AUV identified the added mass matrix
and hydrodynamic coefficients of the longitudinal equation of motion. The results indicate that it will be possible
to maneuver an AUV to a specific rendezvous point at a specified time. Two-vehicle rendezvous maneuvers are
likely to be needed in multi-vehicle operations when data transfer between range-limited communications modems
are used.

15. NUMBER OF
PAGES 116

14. SUBJECT TERMS Underwater Vehicle, AUV, Trajectory Planning, Control

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

TRAJECTORY PLANNING FOR THE ARIES AUV

John J. Keegan
Lieutenant Commander, United States Navy

B.E.E., Villanova University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2002

Author: John J. Keegan

Approved by: Anthony J. Healey
Thesis Advisor

 Terry R. McNelley
Chairman, Department of Mechanical Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis supports ongoing ONR research in the area of Autonomous

Underwater Vehicles (AUVs) and Mine Warfare. It shows a simulation of a two-vehicle

autonomous rendezvous using both along track and cross track position controllers.

Conducting open water experiments with the ARIES AUV identified the added mass

matrix and hydrodynamic coefficients of the longitudinal equation of motion. The results

indicate that it will be possible to maneuver an AUV to a specific rendezvous point at a

specified time. Two-vehicle rendezvous maneuvers are likely to be needed in multi-

vehicle operations when data transfer between range-limited communications modems

are used.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS
I. INTRODUCTION... 1

A. BACKGROUND.. 1
B. SCOPE OF THIS WORK .. 3

II. EQUATIONS OF MOTION AND AUV MODELING ... 5
A. GENERALIZED STEERING EQUATIONS OF MOTION...................... 5
B. ARIES CONTROL LAWS FOR STEERING AND CROSS TRACK

ERROR .. 8
C. SIMULATION RESULTS ... 11

III. TRAJECTORY PLANNING ... 15
A. INTRODUCTION AND BACKGROUND... 15
B. ARRIVAL AT A DEFINED PLACE IN SPACE....................................... 15
C. ARRIVAL AT A DEFINED PLACE IN TIME WITHOUT

ACCELERATION .. 16
D. ARRIVAL AT A DEFINED PLACE IN TIME WITH

ACCELERATION .. 19

IV. BUILDING AN ALONG TRACK SPEED (ATS) CONTROLLER.................... 23
A. THEORY BEHIND THE LONGITUDINAL EQUATION OF

MOTION.. 23
B. PARAMETER IDENTIFICATION.. 24
C. DEFINING THE COEFFICIENTS FOR THE LONGITUDINAL

EQUATION OF MOTION .. 25
D. COEFFICIENT IDENTIFICATION FROM THE RATIONAL

APPROACH .. 30
E. THE SPEED CONTROLLER ... 33

V. RESULTS.. 35
A. DIFFERENT TIME COMBINATIONS AT SAME [X,Y] POSITION... 35
B. SAME TIME COMBINATIONS AT DIFFERENT [X,Y] POSITION... 41

VI. CONCLUSIONS AND RECOMMENDATIONS.. 49
A. CONCLUSIONS.. 49
B. RECOMMENDATIONS.. 49

APPENDIX A. MATLAB FILE WAYPOINT.M ... 51

APPENDIX B. MATLAB FILE RENDEZVOUS.M .. 59

APPENDIX C. MATLAB FILE COEFFICIENTS.M.. 75

APPENDIX D. MATLAB FILE FINALRENDEZVOUS.M ... 81

LIST OF REFERENCES ... 99

INITIAL DISTRIBUTION LIST .. 103

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

ACKNOWLEDGMENTS

I would like to acknowledge Professor Anthony J. Healey for his guidance and

patience throughout the thesis process. His knowledge on this subject area is limitless

and truly inspirational. Additionally, I would like to thank CDR Bill Marr for his

technical assistance and support in obtaining and interpreting data for this thesis. My

former Commanding Officers on USS DEFENDER (MCM-2), CDR Andy Fuller and

CDR Tom Negus, deserve special mention for endorsing my career path and having faith

in my abilities. Their unwavering support was crucial for my attendance at NPS.

Hopefully this work pays off part of the debt I owe to the MIW community. Finally, and

most importantly, I would like to thank my wife, Sue, and daughters, Caitlin and Caroline

for their love and support. The work was conducted in concert with work funded by

ONR under Dr. T. Swean.

 x

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

Research in the field of autonomous underwater vehicles (AUVs) at the Naval

Postgraduate School (NPS) has progressed steadily since the inception of the Center for

AUV Research in 1987. The operational capabilities and sophistication of software and

hardware has greatly increased with each new generation of vehicle. From humble

beginnings in swimming pools to open ocean operation, these vehicles have been at the

forefront of AUV research.

The unique ability of AUVs to operate in very shallow water (VSW), where

depths range from ten to thirty feet, enables the Mine Warfare (MIW) Commander to

search, detect, and classify mines effortlessly and safely when compared to current

practice Navy Special Operations or Special Warfare Teams. In an effort to expand the

search area and provide the MIW Commander with near real-time information, the use of

multiple vehicles having the ability to communicate between each other is the logical

solution. The Acoustic Radio Interactive Exploratory Server (ARIES) AUV is designed

to operate as a communications server vehicle. It is outfitted with the Florida Atlantic

University (FAU) acoustic modem and has the capability to act as a command and

control vehicle for numerous vehicles while operating in the search area. Equipped with

a radio modem, when surfaced, ARIES has the ability to send and receive data to the

MIW Commander embarked offshore.

Current modem technology has limitations, requiring increases in both data rate

and range. This will also require an increase in power and size of the modem. By using

a mobile server, such as ARIES, close proximity, high-speed data transfers will achieve

the same results as a long-range modem. Current employment of the ARIES is shown in

Figure 1. Command and control of ARIES is accomplished using a Boston Whaler as a

relay station. Radio ranges of four to six nautical miles with data transfer rates of 30,000

bits/sec are routine.

2

Figure 1. Current Employment of ARIES (From: Healey, 2001)

Possible employment of ARIES is shown in Figure 2. Here ARIES will

rendezvous with other vehicles, such as the Remote Environmental Measuring Units

(REMUS), conduct file transfer operations and then relay the information to the

command and control base.

3

Figure 2. Possible Employment of ARIES (From: Healey, 2001)

In order to accomplish the rendezvous, ARIES must have the capability to arrive

at a certain location at a certain time. This is known as trajectory planning.

B. SCOPE OF THIS WORK

Trajectory planning has not been researched in the case of AUVs and has only

been touched on in the robotics community. Kant and Zucker (1986) illustrated the

everyday version of the trajectory-planning problem as simply being, “How does one get

from here to there”? This is a problem that humans solve so often and intuitively that the

underlying complexity is given little or no thought.

The focus of this thesis is two-fold:

1. To develop a new behavior for ARIES - that of arriving at a defined place in

space and time; and

2. To extend cross-track error guidance algorithms (Marco, 2000) to close along

track as well as cross track errors resulting in a trajectory controller.

4

Chapter II will focus on the equations of motion for an AUV and the associated

steering control laws. Chapter III will discuss trajectory planning theory and

implementation. Chapter IV will discuss the theory and design of a sophisticated speed

controller to complement the trajectory controller discussed in the previous chapter.

Chapter V will present simulation results from the implementation of the complete

trajectory/speed controller combination and Chapter VI will offer conclusions and

recommendations for future study.

5

II. EQUATIONS OF MOTION AND AUV MODELING

A. GENERALIZED STEERING EQUATIONS OF MOTION

This section describes the equations of motion that are the basis for the model

used to construct ARIES steering controllers.

 Using a Newton-Euler approach, Healey, (1995) derives the equations of six

degree of freedom motion as:

SURGE EQUATION OF MOTION

m[() () ()qprzrpqyrqxqwrvu GGGrrr &&& ++−++−+− 22] () fXBW =θ−+ sin (1)

SWAY EQUATION OF MOTION

m[() () ()pqrzrpyrpqxpwruv GGGrrr &&& −++−++−+ 22] () fYBW =φθ−− sincos (2)

HEAVE EQUATION OF MOTION

m[() () ()22 qpzpqryqprxpvquw GGGrrr +−++−++− &&&] () fZBW =φθ−+ coscos (3)

ROLL EQUATION OF MOTION

() () () () ()[pvquwymrpqIrqIqprIqrIIpI rrGxzyzxyyzx +−++−−−−+−+ &&&& 22 (4)

()] () () fBGBGrrrG KBzWzByWypwruvz =φθ−+φθ−−−+− sincoscoscos&

PITCH EQUATION OF MOTION

() () () () ()[pvquwxmrpIrpqIpqrIprIIqI rrGxzyzxyzzy +−−−+−++−−+ &&&& 22 (5)

()] () () fBGBGrrrG MBzWzBxWxqwrvuz =θ−+φθ−++−− sincoscos&

YAW EQUATION OF MOTION

() () () () ()[pwruvxmpqrIqprIqpIpqIIrI rrrGxzyzxyxyz −++−++−−−−+ &&&& 22 (6)

()] () () fBGBGrrrG NByWyBxWxqwrvuy =θ−−φθ−−+−− sinsincos&

Where:

ur, vr, wr = component velocities for a body fixed system with respect to the water

6

p, q, r = component angular velocities for a body fixed system
W = weight
B = buoyancy
I = mass moment of inertia terms
xB, yB, zB = position difference between geometric center of ARIES and center of

buoyancy
xG, yG, zG = position difference between geometric center of ARIES and center of

gravity
Xf, Yf, Zf, KF, Mf, Nf = sums of all external forces acting on ARIES in the particular

body fixed direction

Healey (1995) further simplifies Equations 1 thru 6 by assuming that the center of

mass of the vehicle lies below the origin (zG is positive) while xG and yG are zero, and

that the vehicle is symmetric in its inertial properties. It is also assumed that motions in

the vertical are negligible (i.e. [wr, p, q, r, Z, φ, θ] = 0) and that ur equals the forward

speed, Uo. The simplified equations of motion are thus:

or Uu = (7)

()tYrmUvm for ∆+−=& (8)

()tNrI fzz ∆=& (9)

r=ψ& (10)

cxro UvUX +ψ−ψ= sincos& (11)

cyro UvUY +ψ−ψ= cossin& (12)

Johnson (2001) defines ()t∆Yf and ()t∆Nf as forces that are functions of the

vehicles dynamic parameters. Through the assumption of ‘small’ motions

‘hydrodynamic coefficients’ can be defined related to the individual motion components.

The expression for the transverse force is:

rYrYvYvYY rrrvrvf rr
+++= && && (13)

and for the expression for the rotational force is:

rNrNvNvNN rrrvrvf rr
+++= && && (15)

This leads to:

7

r

f
v v

Y
Y

r &
& ∂

∂
= ;

r

f
v v

Y
Y

r ∂
∂

= ;
r

Y
Y f

r &
& ∂

∂
= ;

r
Y

Y f
r ∂

∂
= ;

and

r

f
v v

N
N

r &
& ∂

∂
= ;

r

f
v v

N
N

r ∂
∂

= ;
r

N
N f

r &
& ∂

∂
= ;

r
N

N f
r ∂

∂
= ;

Where:

rvY& = added mass in sway coefficient

rY& = added mass in yaw coefficient

rvY = coefficient of sway force induced by side slip

rY = coefficient of sway force induced by yaw

rvN & = added mass moment of inertia in sway coefficient

rN & = added mass moment of inertia in yaw coefficient

rvN = coefficient of sway moment from side slip

rN = coefficient of sway moment from yaw

In addition, the action of the rudder will produce forces that when linearized are: ()tδY rδ

and ()tδN rδ . The dynamics of the vehicle are thus defined as:

()tYrYrYvYvYrmUvm rrrrvrvor rr
δ+++++−= δ&&& &&& (16)

()tNrNrNvNvNrI rrrrvrvzz rr
δ++++= δ&&& && (17)

r=ψ& (18)

The kinematics of the vehicle is described by Equations (11) and (12) where Ucx and Ucy

are the current velocities in the associated direction. The steering dynamics of ARIES in

matrix form, M x& = Ax + Bu, is:

−−

−−

100
0
0

rzzv

rv

NIN
YYm

r

r

&&

&&

ψ&
&

&

r
vr

=)(tN
Y

r
v

NN
mUYY

r

r

rv

orv

r

r

δ

+

ψ

 −

δ

δ

0010
0
0

 (19)

As Johnson (2001) points out, ()trδ is a generalized command that represents the

control input to both rudders. The rudders act together, but turn in opposite directions

allowing for rapid turning during operation.

8

 The final assumption made for ARIES (Johnson, 2001) is that the cross coupling

terms in the mass matrix are zero. This is based on the vehicle’s symmetry and the

rudders being very close to being equidistant from the body center. Thus, in matrix form,

the final vehicle dynamics are defined as:

−

−

100
00
00

rzz

v

NI
Ym

r

&

&

ψ&
&

&

r
vr

=)(tN
Y

r
v

NN
mUYY

r

r

rv

orv

r

r

δ

+

ψ

 −

δ

δ

0010
0
0

 (20)

Johnson (2001) determined the hydrodynamic coefficients for ARIES to be as

follows:

rvYm &− = 456.76

rY& = 69.90

rvY = -68.16

rY = 406.30

rN & = -35.47

rvN = -10.89

rN = -88.34

B. ARIES CONTROL LAWS FOR STEERING AND CROSS TRACK
ERROR

This section describes the control laws used by ARIES for steering and cross

track error.

ARIES has four different autopilots for flight maneuvering control: diving,

steering, altitude above bottom, and cross track error. With the object of accomplishing

trajectory planning, only the steering and cross track error controllers are of interest. The

controllers are based on sliding mode control theory presented by Healey and Lienard

(1993).

Marco and Healey (2001) argue that a second order model is sufficient for

heading control. The sideslip effects are treated as disturbances that the control

overcomes, so the heading model becomes:

)()()()(esdisturbanctbtartr r +δ+=& (21)

)()(trt =ψ& (22)

9

From past in-water experiments, a = -0.30 sec-1 and b = -0.1125 sec-2. δr(t) is the stern

rudder angle. The sliding surface and stern rudder command for heading control is thus

defined by Healey and Marco (2001) as:

))((.)(.)(ttrt com ψ−ψ+−=σ 1701094990 (23)

)))(tanh()(.(.)(φση+−=δ ttrtr 539425431 (24)

Where η = 1.0, φ = 0.5 and ψcom-ψ(t) is the heading error.

In order for ARIES to follow a straight-line path, Marco and Healey (2001) use a

combination of line of sight guidance proposed by Healey and Lienard (1993) and a cross

track error (CTE) control. The reasoning behind this is that with large heading errors, the

cross track error control cannot be guaranteed stable, while a line of sight heading control

will reduce heading errors to zero. Alternating between the two controllers will minimize

both cross track and heading errors. Figure 3 shows the track geometry and velocity

vector diagrams to support the argument.

Figure 3. Track Geometry and Velocity Vector (From: Marco and Healey, 2001)

The perpendicular distance between the center of the vehicle (X(t),Y(t)) and the

adjacent track line is the cross track error, ε(t). The goal of the CTE control is to

10

minimize ε(t). The total track length is defined as the distance between the ith and i-1

waypoints and is given by:

2
1

2
1)()()()()()(−− −+−= iwptiwptiwptiwpti YYXXL (25)

The ordered pairs (Xwpt(i), Ywpt(i)) and (Xwpt(i-1), Ywpt(i-1)) are the current and previous way

points. The track angle is defined as:

),(arctan)()()()()(112 −− −−=ψ iwptiwptiwptiwptitrk XXYY (26)

Where arctan2 is defined by MATLAB as the inverse tangent function. The cross track

heading error for the ith segment is defined as:

)()()()(~
itrkiCTE tt ψ−ψ=ψ (27)

where)()(~
iCTEtψ must be normalized to lie between ± 180 degrees. The difference

between the current vehicle position and the next way point is:

)()(~
)()(tXXtX iwptiwpt −= (28)

)()(~
)()(tYYtY iwptiwpt −= (29)

With the above definitions, the distance to the ith way point projected to the track line

can be defined as:

iiwptiwptiwptiwptiwptiwpti LYYXXYXtS /)]()([]~~[)()()()()()()(11 −− −−•= (30)

therefore, S(t)i ranges between 0-100 percent of Li. The cross track error may now be

defined as:

))(sin()()(tdtSt pi=ε (31)

where dp(t) is the angle (normalized to lie between ±180 degrees) between the line of

sight to the next way point and the current track line given by:

))(~,)(~(arctan),(arctan)()()()()()()(iwptiwptiwptiwptiwptiwptp tXtYXXYYtd 22 11 −−−= −− (32)

11

 Marco and Healey (2001) continue by defining the sliding surface in terms of

derivatives of the cross track error such that the sliding surface for the CTE controller

becomes a second order polynomial of the form:

)())(~sin())(~cos()()()()(ttUttUrt iCTEiCTE ελ+ψλ+ψ=σ 21 (33)

The rudder input is thus expressed as:

))(~sin())(())(~cos()(())(~cos(()()()()(iCTEiCTEiCTEr ttrUttUartUbt ψ+ψ−ψ=δ − 21 (34)

))(())(~sin())(~cos()()()(φση−ψλ−ψλ− ttUttUr iCTEiCTE 21

where
2

0 π<ψ<)()(~
iCTEt , λ1 = 0.6, λ2 = 0.1, η = 0.1 and φ = 0.5. If

2
π>ψ)()(~

iCTEt ,

ARIES will follow the track, but travel in the opposite direction to that desired. In order

to prevent this from happening in practice, a bound of 40 degrees is used as a switch to

line of sight (LOS) control.

 Marco and Healey (2001) determined that when the magnitude of the cross track

heading error exceeded 40 degrees, a LOS controller is used and the heading command

and LOS error could be determined from:

))(~,)(~(arctan)()()()(iwptiwptLOScom tXtYt 2=ψ (35)

)()()(~
)(ttt LOScomLOS ψ−ψ=ψ (36)

The control laws for the heading controller, Equations 23 and 24, are used for heading

control. The need for the LOS controller is apparent in two cases: 1) when the mission

starts and ARIES’ initial heading is greater than 40 degrees from the initial way point and

2) when the angle between two sequential track lines exceed 40 degrees. Once the cross

track heading error reduces to less than 40 degrees, ARIES utilizes the CTE controller.

C. SIMULATION RESULTS

Appendix A contains the MATLAB .m file written by Marco (2001) that

demonstrates Marco and Healey’s heading and cross track error controllers for the NPS

ARIES. Table 1 shows the track.out file used to plan the simulated ARIES mission. It

12

consists of 5 tracks (rows). The columns are defined below the table. Figure 4 shows the

results of the simulation.

Table 1. track.out file (From: Marco and Healey, 2001)

1 2 3 4 5 6 7 8 9 10 11

10.0 10.0 2.75 2.75 0 1.25 1 0 25.00 8.00 40.00

10.0 210.0 2.75 2.75 0 1.25 1 0 25.00 8.00 200.00

40.0 210.0 2.75 2.75 0 1.25 1 0 25.00 2.00 30.00

40.0 10.0 2.75 2.75 0 1.25 1 0 25.00 2.00 200.00

-20.0 -60.0 2.75 2.75 0 1.25 1 0 25.00 2.00 100.00

Column # Description
1 X position way point (meters)
2 Y position way point (meters)
3 Left screw command speed (volts)
4 Right screw command speed (volts)
5 Control mode flag, 0 = Depth Control, 1 = Altitude Control
6 Commanded Altitude (feet, if applicable)
7 Commanded Depth (feet, if applicable)
8 Perform GPS popup on this track? 1 = Yes, 0 = No
9 Duration of GPS popup (seconds)
10 Watch Radius, Rw(i) (meters)
11 Way point timeout. (seconds)

13

−100 −50 0 50 100 150 200 250
−80

−60

−40

−20

0

20

40

60
ARIES Track − Actual and Planned

Y (meters)

X
 (

m
et

er
s)

Actual Track
Planned Track

Figure 4. Simulation Results of Heading and CTE Controllers

It can be seen from Figure 4, that as ARIES starts the mission at (X = -80, Y = 10)

with an initial heading of 50 degrees, LOS control is utilized until the cross track heading

error falls below 40 degrees and CTE control takes over. LOS control is evident at each

turn.

14

THIS PAGE INTENTIONALLY LEFT BLANK

15

III. TRAJECTORY PLANNING

A. INTRODUCTION AND BACKGROUND

As previously stated in Chapter I, trajectory tracking is defined as getting from

point A to point B at a certain time. Fraichard (1993) eloquently described trajectory

planning of a robot as the time history of a continuous sequence of configurations

between the current configuration of the robot and its goal configuration. He argued that

trajectory planning with its time dimension allows accounting of time-dependent

constraints such as moving obstacles and the dynamic constraints of the robot. Dynamic

constraints of robots are usually taken to be: engine force, sliding (friction between the

wheels and ground), and velocity.

With the object of defining a new behavior for the NPS ARIES, that of arriving at

a defined place in space and time, this chapter will seek to accomplish the object by first

getting ARIES to arrive at a defined place in space and then second, getting ARIES to

arrive at a defined time.

B. ARRIVAL AT A DEFINED PLACE IN SPACE

In practice, ARIES will be used to develop a communications server vehicle.

While running a pre-programmed mission, she will be expected to receive modem

commands from other vehicles that will direct her to a designated rendezvous location

and time for file transfer operations. The first step in accomplishing this rendezvous

requires ARIES to respond to a short-low bit rate modem command and then go to the

rendezvous location regardless of time. This was accomplished by modifying the

MATLAB .m file written by Marco (2001).

By writing a break into the .m file, thirty seconds into the simulation, a simulated

modem command can be transmitted to ARIES designating a rendezvous position in the

form of a one-row track.out file (Table 1). The new track.out file essentially overwrites

the original track.out file and the simulation proceeds using the cross track error (CTE)

and line of sight (LOS) controllers explained in Chapter II. Figure 5 shows the results of

sending the vehicle to rendezvous location of (X = -20, Y = 100) thirty seconds into the

16

mission of Figure 4. The modifications to the original Marco (2001) MATLAB .m file

can be seen in Appendix B.

−100 −50 0 50 100 150 200 250
−80

−60

−40

−20

0

20

40

60
ARIES Track − Actual and Planned

Y (meters)

X
 (

m
et

er
s)

Initial Track
Track After Mission Change
Rendezvous Point
Planned Track

Figure 5: Simulation of a Modem Command Directing ARIES to a Rendezvous Point

C. ARRIVAL AT A DEFINED PLACE IN TIME WITHOUT

ACCELERATION

Having previously defined S(t)i as the distance to the ith way point projected to

the track line, S(t)i can be re-characterized as the vehicle path and s can simply be defined

as the distance traveled along the path. Velocity can now be defined as s& . Using theory

developed by Fraichard (1993), the state-time space of ARIES is thus a three-dimensional

space (s x s& x& t), where t represents the time dimension. The dynamic constraints of

ARIES are transformed into constraints on the velocity, s& , and the acceleration, s&& . The

constraints on s& translate into a velocity limit curve in the (s x s&) plane.

With only a top speed of 3.5 knots, ARIES is not capable of the large speed changes seen

in robots. In order to use velocity to the advantage in this trajectory planning problem, it

17

is proposed that the velocity limit curve be defined as a step function, i.e., velocity is one

of two states: maximum (3.5 knots) or minimum (0.5 knots). Making the assumption that

the acceleration is zero further simplifies the problem. The basic uniform motion

equations: s(t) = so + vt and v(t) = v thus hold true.

The first item that must change in order to solve the rendezvous problem is in

regards to the eleven-column track.out file as shown in Table 1. In its current

configuration, a rendezvous time is not mentioned. In order to work around this, at the

break in the .m file that allows the operator to send a simulated modem command, a one

line, twelve-column track.out file is sent instead of the old eleven-column file. The new

twelfth column indicates the time to rendezvous in seconds after the modem command.

Now that ARIES has a rendezvous location and time, the mission feasibility must

be determined. The mission feasibility is solely based on the velocity constraints of

ARIES (since acceleration is assumed to be zero). If the time allotted for the rendezvous

is greater than the distance to the rendezvous point divided by the maximum speed (3.5

knots) or if the time allotted for the rendezvous is less than the distance to the rendezvous

point divided by the minimum speed (0.5 knots), the mission is deemed feasible and not

constrained by the velocity. The distance to the rendezvous point (Li) is defined by

equation 25.

Once the mission has been deemed feasible, the simulation proceeds using the

pre-existing CTE and LOS controllers to determine the vehicle’s relative position with

regard to the rendezvous point. A simple, speed controller is then implemented to control

ARIES’ speed with respect to time. This is accomplished by determining the overall

distance traveled (ODTi) in a given time step as defined by:

iii sLODT −= −1 (37)

where si is the distance traveled along the path. The time used is simply the distance

traveled divided by ARIES’ speed, and the time remaining until rendezvous is the given

time (column twelve of the track.out file) minus the time used.

 If the time remaining until the rendezvous is less than the distance traveled along

the path (s) divided by the speed (U), then the vehicle is sped up to the maximum speed

18

of 3.5 knots. If the time remaining is greater than or equal to
U
s , then ARIES is slowed

to 0.5 knots. Figure 6 is a three-dimensional, time-space plot that shows the results of

sending ARIES to the rendezvous location (X = -20, Y = 100, t = 90) thirty seconds into

the original mission depicted in Figure 4. Having assumed no acceleration, Figure 7

shows the step function behavior of ARIES’ speed.

0
20

40
60

80
100

−80

−70

−60

−50

−40

−30

−20
0

20

40

60

80

100

120

Y (meters)

Time Space Plot

X (meters)

T
im

e
(s

ec
on

ds
)

Original Track
New Track
Rendezvous

Figure 6: Three Dimensional Time-Space Plot

19

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Time vs Forward Speed

Time (sec)

F
or

w
ar

d
S

pe
ed

 (
m

/s
)

Original Speed
Rendezvous Speed

Figure 7: Time-Speed Plot Showing Step Behavior, No Acceleration/Deceleration

 This simple speed controller, that assumes uniform motion, solves the problem of

having ARIES arrive at a defined time. The assumption of no acceleration, however, is

flawed and is now addressed. For that reason, the code utilized to produce Figures 6 and

7 is not included in this work.

D. ARRIVAL AT A DEFINED PLACE IN TIME WITH ACCELERATION

Using data files from three separate missions conducted in the Azores in August

2001, the longitudinal ground speed was plotted against the time in order to determine

ARIES’ acceleration and deceleration. Figure 8 shows the data from mission file

Navd_081102_02.d.

20

0 500 1000 1500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time Units

S
pe

ed
 (

m
/s

)

Longitudinal Ground Speed vs Time Units

Figure 8: Longitudinal Ground Speed vs Time Units for Azores Mission 081101_02

For this mission, it was estimated that ARIES went from 0 m/s to 1.2 m/s in

approximately 856 time units where each time unit is 0.125 seconds. This is an

acceleration rate of approximately 0.0112 m/s2. The other two mission files

(Navd_081101_04.d and Navd_081001_03.d) showed approximate accelerations of

0.0152 m/s2 and 0.0044 m/s2 respectively. These results led to an estimate of ±0.01 m/s2

as ARIES’ acceleration/deceleration constant for the sole purpose of adding acceleration

into the previously designed speed controller. These calculations do not take into

consideration that ARIES starts on the surface and comes to its ordered depth.

Now that acceleration is being used, acceleration can be treated as a dynamic

constraint. The mission cannot be feasible if the distance to the rendezvous minus the

acceleration/deceleration distance is less than the min/max speed multiplied by the time it

takes to accelerate/decelerate from initial speed (U) to final speed (Uo). The

acceleration/deceleration distance is given by:

21

a
UU

d o

2

22 −
= (38)

where a is the acceleration constant.

 Once the mission is determined to be feasible, if ARIES needs to increase her

speed based on the distance remaining to the rendezvous point and time remaining until

the rendezvous time, speed is adjusted as:

iusediii taUU ,+= −1 (39)

where Ui is the new speed, Ui-1 is the previous speed, ai is the acceleration constant and

tused,i is the time used between (i-1) and i. The maximum Ui is held at 3.5 knots. If

ARIES needs to decrease her speed, the following equation is used:

iusediii taUU ,−= −1 (40)

The minimum speed of ARIES is held to 0.5 knots.

 Figure 9 shows the effect of deceleration on the time-speed plot for the mission

shown in Figure 6.

22

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Time vs Forward Speed

Time (sec)

F
or

w
ar

d
S

pe
ed

 (
m

/s
)

Original Speed
Rendezvous Speed

Figure 9: Time-Speed Plot With Deceleration

23

IV. BUILDING AN ALONG TRACK SPEED (ATS) CONTROLLER

A. THEORY BEHIND THE LONGITUDINAL EQUATION OF MOTION

The use of the basic uniform motion equations: s(t) = so + vt and v(t) = v with the

addition of acceleration does not hold true for an underwater vehicle. For that reason, the

code utilized to produce Figure 9 is not included in this work. Chapter II discussed the

equations of motion for the ARIES vehicle. Healey (1995) further derives the surge

equation of motion in order to model the longitudinal dynamics of the vehicle. He

assumes that the hydrodynamic forces in the surge direction are not generated by lift and

are dominated by drag and added mass effects. He also points out that the primary thrust

forces for ARIES comes from the propellers. This gives rise to the equation of motion

for longitudinal motion:

()
r r ru r r r r propu um X u mv r X u u X− = + +& & (41)

Xprop represents the net propulsive force on the vehicle from propeller action. It consists

of two parts: the bollard pull force and the loss of thrust caused by the subsequent

forward motion of the vehicle. The bollard pull force is equal to n nα where α equals

(KtρD4). Kt is the thrust coefficient and is a function of the propeller speed of advance.

The loss of thrust caused by the subsequent forward motion of the vehicle is equal to

n uγ where γ equals 3
o Dγ ρ . The coefficient γo is the slope of the Kt curve at the

particular operating condition of interest. Assuming the lateral, sideslip velocity is

negligible simplifies equation 41 yielding the equation of motion for longitudinal motion

in a straight line as:

()
r r ru r r r ru um X u X u u n n n uα γ− = + −& & (42)

From Johnson (2001), the value of m for ARIES is 222.26 kg, the length (a) is 64

inches and the diameter (b) is 7.53 inches. Based on work by Lamb (1945), for a

neutrally buoyant mass and equating the total volume of ARIES to a prolate ellipsoid

model while maintaining the overall length results in an a/b ratio of 8.499. Interpolating

24

Lamb’s table results in a kx value of 0.0266 which results in
ruX & = 6.79 kg and (m -

ruX &)

= 215.47 kg. Solving for ru& results in:

0.004641()
r rr r r ru uu X u u n n n uα γ= + −& (43)

B. PARAMETER IDENTIFICATION

The unknown values in equation 43 are
r ru uX , α, and γ. In order to successfully

identify the unknown coefficients it is common practice to accurately model the ARIES

control and response. By manipulating the equation of motion, we can let system

parameters become unknowns and the variables, as measured, to be known. Data

gathered by ARIES from her onboard sensors is sampled at eight Hertz and is therefore

not continuous. This calls for the use of a discrete time model. In this case,

(1) ()() r r
r

u t u tu t
t

+ −=
∆

& where ∆t equals 0.125 seconds. This simplifies equation 43 to:

(1) () 0.004641 (() () () () () ())
r rr r r r ru uu t u t t X u t u t n t n t n t u tα γ+ − = ∆ + −& (44)

Equation 44 can be cast into matrix form: y(t) = H(t)Θ(t) where y(t) =

(1) ()r ru t u t+ −& , H(t) is the n x 3 matrix of measurements relating to the output (i.e. n(t)

and ur(t)) and Θ(t) is the 3 x 1 matrix of coefficients (
r ru uX , α, and γ).

As Johnson (2001) pointed out, using a least squares method to estimate the

parameters Θ(t), which are never exactly known, results in minimizing the difference

between the actual parameter and its estimate. The difference is known as the equation

error and it is defined as:

ˆ() (() () ())e t y t H t t= − Θ (45)

where ˆ ()tΘ is the estimate of Θ(t). For this particular case, it involves using the data

obtained from the vehicle sensors combined with the equation 44. Johnson (2001) further

points out that in order to minimize the error, define the scalar positive squared error

measure, '

1
() () ()

n

t
J n e t e t

=

=∑ then the minimization of J is given by:

25

'

1
0 () ()ˆ

n

t

dJ H t e t
d =

= = −
Θ ∑ (46)

and substituting y(t) = H(t)Θ(t) produces:

'

1

ˆ0 ()(() () ())
n

t
H t y t H t t

=

= − − Θ∑ (47)

Rearranging this into matrix form and solving for ˆ ()tΘ gives:

' 1 'ˆ []H H H y−Θ = (48)

Using the matrix divide function in MATLAB to evaluate equation 48 will produce a

result that is the least squares fit for ˆ ()tΘ .

 Gelb (1974) points out that the same result may be found using the gaussian

random assumptions in which the solution, ˆ ()tΘ , in equation (47) is the most likely

solution in which its probability is maximum. It should be noted that the regression

matrix, '

1
[() ()]

n

t
H t H t

=
∑ , must be positive and strong (with no singularity) otherwise its

inverse does not exist. This means that the system must be perpetually excited by its

input.

C. DEFINING THE COEFFICIENTS FOR THE LONGITUDINAL

EQUATION OF MOTION

In order to gather the required output data (n(t) and ur(t)) to solve equation 44 by

the method of least squares, an experiment was planned. ARIES was programmed with

the track.out file listed in Table 2.

Table 2. track.out file for 17 April 2002 Experiment

1 2 3 4 5 6 7 8 9 10 11
 800.00 300.00 3.25 3.25 0 8.0 2.0 1 25.0 10.00 40.0
900.00 300.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0

1000.00 300.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0
1100.00 300.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0
1200.00 300.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0
1300.00 300.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0
1300.00 350.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 75.0
1200.00 350.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0

26

1100.00 350.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0
1000.00 350.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0
900.00 350.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0
800.00 350.00 3.25 3.25 0 8.0 2.0 0 25.0 10.00 150.0

The values in the columns are described as follows:

Column # Description
 1 X position way point (meters)
 2 Y position way point (meters)
 3 Left screw command speed (volts)
 4 Right screw command speed (volts)
 5 Control mode flag, 0 = Depth Control, 1 = Altitude Control
 6 Commanded Altitude (feet, if applicable)
 7 Commanded Depth (feet, if applicable)
 8 Perform GPS popup on this track? 1 = Yes, 0 = No
 9 Duration of GPS popup (seconds)
 10 Watch Radius, Rw(i) (meters)
 11 Way point timeout. (seconds)

The mission described in Table 2 starts ARIES out at a speed of approximately

1.8 m/s. After conducting a GPS popup, the vehicle runs for approximately 100 meters at

this speed and then the speed is reduced to approximately 1.4 m/s for the next 100 meters.

ARIES is then accelerated to 1.8 m/s for the next 100 meters. This pattern is continued

until reaching the turn around point. Upon turning around, the vehicle continues the

speed increase/decrease pattern until the end point. In this configuration, four sets of

acceleration/deceleration data can be obtained.

The experiment was successfully conducted in Monterey Bay on 17 April 2002.

In total, three data runs were conducted. In the third run, the right and left screw

command voltages were slightly modified due to the first two runs showing that the

voltages were not matched. The track.out file used in run three is shown in Table 3.

Table 3. track.out file for Run 3

1 2 3 4 5 6 7 8 9 10 11

800.00 300.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 40.0
900.00 300.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0

1000.00 300.00 2.40 2.40 0 8.0 2.0 0 25.0 10.00 150.0
1100.00 300.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0
1200.00 300.00 2.40 2.40 0 8.0 2.0 0 25.0 10.00 150.0
1300.00 300.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0
1300.00 350.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 75.0

27

1200.00 350.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0
1100.00 350.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0
1000.00 350.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0
900.00 350.00 2.50 2.50 0 8.0 2.0 0 25.0 10.00 150.0
800.00 350.00 2.8 2.8 0 8.0 2.0 0 25.0 10.00 150.0

Figure 10 shows the planned and actual tracks and Figure 11 shows the changes in

longitudinal speed during the three runs.

290 300 310 320 330 340 350 360
400

600

800

1000

1200

1400
Actual and Planned Track − Run 1

Y (meters)

X
 (

m
et

er
s)

Actual
Planned

290 300 310 320 330 340 350 360
400

600

800

1000

1200

1400
Actual and Planned Track − Run 2

Y (meters)

X
 (

m
et

er
s)

Actual
Planned

290 300 310 320 330 340 350 360
400

600

800

1000

1200

1400
Actual and Planned Track − Run 3

Y (meters)

X
 (

m
et

er
s)

Actual
Planned

Figure 10: Actual and Planned Tracks of 17 April 2002 Experiment

28

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2
Vehicle Speed − Run 1

Time Units

Lo
ng

. S
pe

ed
 (

m
/s

)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2
Vehicle Speed − Run 2

Time Units

Lo
ng

. S
pe

ed
 (

m
/s

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

2
Vehicle Speed − Run 3

Time Units

Lo
ng

. S
pe

ed
 (

m
/s

)

Figure 11: Speed Plots for 17 April 2002 Experiment

With the data gathered from this experiment, the MATLAB file shown in

Appendix C, coefficients.m, was utilized to determine the unknown coefficients,
r ru uX ,

α, and γ. It should be noted that during this process it was discovered that previous work

had identified the propeller rotation rate in rotations per minute (rpm) was calculated by

multiplying the input voltage by a factor. The factor for the port propeller is 133.8047

and for the starboard propeller the factor is 124.4615. Looking at the technical

29

specifications provided by the manufactor, Tecnadyne Corporation, a factor of 266

should be used to determine the number of rpm for the propellers. Using the 266 factor

for determining propeller speed based on input voltage, coefficients.m determined that

r ru uX = -15.681, α = 0.079, and γ = 1.247. Plugging these values into equation 44 and

using the propeller speed data obtained from the experiment the accuracy of the

coefficients could be determined. Figure 12 shows the results of the model in relation to

the actual longitudinal speed.

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.5

0

0.5

1

1.5

2
Vehicle Speed − Run 1

Time Units

Lo
ng

. S
pe

ed

Model
Actual

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2
Vehicle Speed − Run 2

Time Units

Lo
ng

. S
pe

ed

Model
Actual

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−0.5

0

0.5

1

1.5

2
Vehicle Speed − Run 3

Time Units

Lo
ng

. S
pe

ed

Model
Actual

Figure 12: Model and Actual Vehicle Speed

30

D. COEFFICIENT IDENTIFICATION FROM THE RATIONAL APPROACH

As can be seen from Figure 12, the coefficients generated by the MATLAB file,

coefficients.m, do not accurately model the data. Assuming ARIES has a drag coefficient

(CD) of 0.1, an area of 0.103 m2 and the density of seawater (ρ) is 1025 3m
kg , then

r ru uX

can be calculated using the formula:

ACX Duu rr
ρ=

2
1 (49)

The result is
r ru uX ≈ -5.25. This value of

r ru uX translates into a force of approximately

16.35 N (3.68 lbf) when the vehicle is traveling at 1.76 m/s. This results in a typical KT

value for AUV/ROV propellers of about 0.4. This value of KT requires the value of α =

0.0793. Lastly by determining that the thrust reduction factor was the determining

coefficient in the model, γ = 0.05 was chosen. Plugging these new values (
r ru uX = -

5.25, α = 0.0793, and γ = 0.05) into equation 44 and using the propeller speed data

obtained from the experiment the accuracy of these new coefficients could be

determined. Figure 13 shows the results of the model in relation to the actual

longitudinal speed.

31

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.5

0

0.5

1

1.5

2
Vehicle Speed − Run 1

Time Units

Lo
ng

. S
pe

ed

Model
Actual

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2
Vehicle Speed − Run 2

Time Units

Lo
ng

. S
pe

ed

Model
Actual

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−0.5

0

0.5

1

1.5

2
Vehicle Speed − Run 3

Time Units

Lo
ng

. S
pe

ed

Model
Actual

Figure 13. New Model and Actual Vehicle Speed

Although the results shown in Figure 13 look accurate for predicting the speed of

ARIES, giving further thought to the value chosen for the drag coefficient, CD, it was

determined that with the various fins on the body of ARIES, a CD = 0.1 was too small and

a CD = 0.2 was more appropriate. This change results in
r ru uX ≈ -10.5. This value of

r ru uX translates into a force of approximately 32.7 N (7.36 lbf) when the vehicle is

traveling at 1.76 m/s. This changes the value for KT to 0.86, which is closer to the value

provided by Tecnadye of about 1.16. This value of KT requires the value of α = 0.155.

32

The γ = 0.05 was not changed. Plugging these new values (
r ru uX = -10.5, α = 0.155,

and γ = 0.05) into equation 44 and using the propeller speed data obtained from the

experiment the accuracy of these new coefficients could be determined. Figure 14 shows

the results of the model in relation to the actual longitudinal speed.

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.5

0

0.5

1

1.5

2
Vehicle Speed − Run 1

Time Units

Lo
ng

. S
pe

ed

Model
Actual

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2
Vehicle Speed − Run 2

Time Units

Lo
ng

. S
pe

ed

Model
Actual

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−0.5

0

0.5

1

1.5

2
Vehicle Speed − Run 3

Time Units

Lo
ng

. S
pe

ed

Model
Actual

Figure 14: Best Model and Actual Vehicle Speed

It can be seen from Figure 14, that this model is more accurate than the previous

model in predicting the actual speed measured by ARIES for these three data runs. The

difficulty in obtaining the coefficients for the longitudinal equation of motion can best be

explained by the very small operating range of the experiment. The speed range was at

33

the most, approximately 0.5 m/s. This translates into a very small region on the standard

Thrust and Torque Coefficients versus Angle of Attack chart (Lewis, 1988). Final

coefficients are summarized in Table 4 shown below:

Table 4. Summary of Coefficient Values

rr uuX -10.5

α 0.155

γ 0.05

E. THE SPEED CONTROLLER

With the coefficients for the longitudinal equation of motion identified, a sliding

mode controller was developed based on the work of Healey and Lienard (1993).

Rewriting equation 44 with the coefficients identified yields:

))()(05.0)()(155.0)()(5.10(004641.0)(tutntntntututtu rrrr −+−∆=& (50)

Considering the)()(05.0 tutn r− as a disturbance, equation 50 can be rewritten as:

))()(.)()(.(.)(tntntututtu rrr 15505100046410 +−∆=& (51)

Choosing)()()(tutut comr −=σ as the sliding surface, where ucom is the desired vehicle

speed, the control law in terms of the command for n(t), propeller speed, is found from:

)/)(tanh()(φση−=σ tt& (52)

This results in the control law being defined as:

)()(.))/tanh()((.)(tutututn rrcom 7467391 +φση−= & (53)

The propeller-speed command thus arises from one term to accelerate the vehicle, one

term to stabilize the motion and one term to overcome the vehicle forward drag. If a

nonzero acceleration is required,)(tucom& is used, otherwise for conditions where it is

required to ‘regulate’ speed,)(tucom& is held to zero.

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

V. RESULTS

A. DIFFERENT TIME COMBINATIONS AT SAME [X,Y] POSITION

The control law, equation 53, and the longitudinal equation of motion, equation

50, were inserted in the MATLAB file called finalrendezvous.m (Appendix D) in place

of the pre-existing, rudimentary speed controller. Choosing a φ = 0.1, a η = 800 and a

rendezvous position of [-20, 100] at a time of 70 seconds produced Figures 15, 16 and 17.

−100 −50 0 50 100 150 200
−120

−100

−80

−60

−40

−20

0

20

40

60
ARIES Track − Actual and Planned

Y (meters)

X
 (

m
et

er
s)

Initial Track − ARIES
Track After Modem Command − ARIES
Rendezvous Point
REMUS Track
Planned Track − ARIES

Figure 15: X-Y Plot for [-20, 100] Rendezvous Location

36

0

20

40

60

80

100

−80

−70

−60

−50

−40

−30

−20

0

10

20

30

40

50

60

70

80

90

100

Y (meters)

Time Space Plot

X (meters)

T
im

e
(s

ec
on

ds
)

Original Track
New Track
Rendezvous

Figure 16: 3-D Plot for 70 Second Rendezvous Time

37

0 20 40 60 80 100
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7
Time vs Forward Speed

Time (sec)

F
or

w
ar

d
S

pe
ed

 (
m

/s
)

Original Speed
Rendezvous Speed
Command Speed

40 60 80 100
12

13

14

15

16

17

18

19

20

21

22
Propeller Speed

Time (sec)

P
ro

pe
lle

r
S

pe
ed

 (
rp

s)

Figure 17: Speed vs Time for 70 Second Rendezvous Time and Propeller Speed vs Time

The above figures show that thirty seconds into ARIES’ mission, the REMUS

requests a rendezvous at location [-20, 100] in 70 seconds and ARIES makes the

rendezvous. The speed controller commands ARIES to speed up from her initial cruising

speed of 1.4 m/s in order to achieve the rendezvous at the designated time. The propeller

speed (shown in the plot to the right) adjusts as necessary.

Keeping the same rendezvous location of [-20, 100] but changing the rendezvous

time to 90 seconds and 120 seconds results in Figures 18 through 21.

38

0

20

40

60

80

100

−80

−70

−60

−50

−40

−30

−20

0

20

40

60

80

100

120

Y (meters)

Time Space Plot

X (meters)

T
im

e
(s

ec
on

ds
)

Original Track
New Track
Rendezvous

Figure 18: 3-D Plot for 90 Second Rendezvous Time

39

0 20 40 60 80 100 120
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45
Time vs Forward Speed

Time (sec)

F
or

w
ar

d
S

pe
ed

 (
m

/s
)

Original Speed
Rendezvous Speed
Command Speed

Figure 19: Speed vs Time for 90 Second Rendezvous Time

40

0

20

40

60

80

100

−80

−70

−60

−50

−40

−30

−20

0

50

100

150

Y (meters)

Time Space Plot

X (meters)

T
im

e
(s

ec
on

ds
)

Original Track
New Track
Rendezvous

Figure 20: 3-D Plot for 120 Second Rendezvous Time

41

0 50 100 150
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Time vs Forward Speed

Time (sec)

F
or

w
ar

d
S

pe
ed

 (
m

/s
)

Original Speed
Rendezvous Speed
Command Speed

Figure 21: Speed vs Time for 120 Second Rendezvous Time

The above four figures show that by increasing the rendezvous time by twenty

seconds, the speed controller responds by commanding ARIES to slow down in order to

reach the rendezvous location at the designated time.

B. SAME TIME COMBINATIONS AT DIFFERENT [X,Y] POSITION

By holding the time of rendezvous constant at 120 seconds and changing the

rendezvous position from [-20, 100] to [-100, 150] and [50, 50], Figures 22 through 27

were produced.

42

−100 −50 0 50 100 150 200
−120

−100

−80

−60

−40

−20

0

20

40

60
ARIES Track − Actual and Planned

Y (meters)

X
 (

m
et

er
s)

Initial Track − ARIES
Track After Modem Command − ARIES
Rendezvous Point
REMUS Track
Planned Track − ARIES

Figure 22: X-Y Plot for [-100, 150] Rendezvous Location

43

0

50

100

150

−100

−80

−60

−40

−20

0

50

100

150

Y (meters)

Time Space Plot

X (meters)

T
im

e
(s

ec
on

ds
)

Original Track
New Track
Rendezvous

Figure 23: 3-D Plot for [-100, 150] Rendezvous Location

44

0 50 100 150
1.34

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52
Time vs Forward Speed

Time (sec)

F
or

w
ar

d
S

pe
ed

 (
m

/s
)

Original Speed
Rendezvous Speed
Command Speed

Figure 24: Speed vs Time for [-100, 150] Rendezvous Location

45

−100 −50 0 50 100 150 200
−120

−100

−80

−60

−40

−20

0

20

40

60
ARIES Track − Actual and Planned

Y (meters)

X
 (

m
et

er
s)

Initial Track − ARIES
Track After Modem Command − ARIES
Rendezvous Point
REMUS Track
Planned Track − ARIES

Figure 25: X-Y Plot for [50, 50] Rendezvous Location

46

0

10

20

30

40

50

−80

−60

−40

−20

0

20

40

60

0

50

100

150

Y (meters)

Time Space Plot

X (meters)

T
im

e
(s

ec
on

ds
)

Original Track
New Track
Rendezvous

Figure 26: 3-D Plot for [50, 50] Rendezvous Location

47

0 50 100 150
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Time vs Forward Speed

Time (sec)

F
or

w
ar

d
S

pe
ed

 (
m

/s
)

Original Speed
Rendezvous Speed
Command Speed

Figure 27: Speed vs Time for [50, 50] Rendezvous Location

In both cases, the speed controller reacts to the change in location and commands

the vehicle to the proper speed in order to arrive at the designated time.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This work has demonstrated that the ARIES AUV can be outfitted with a new

behavior of arriving at a defined place in space and time and that the pre-existing cross-

track error guidance algorithms can be extended to close along track as well as cross

track errors resulting in a trajectory controller.

While only a simulation, this work can be extremely useful to the mission

planner. The ability to determine ARIES’ response over various distances will allow the

MIW Commander to effectively plan the use of his assets when setting up search patterns

for the REMUS vehicles and waiting patterns for ARIES.

B. RECOMMENDATIONS

The difficulty encountered in determining the hydrodynamic coefficients of the

longitudinal equation of motion can be directly attributed to the size and number of open

ocean missions that were conducted. In order to fully realize these values, more runs

would need to be conducted. It is further recommended that each run start at ARIES’

minimum speed and then incrementally increase her speed in small intervals until

reaching maximum speed. Stepping ARIES speed back down to minimum in the same

interval would enhance the data for her deceleration. Overall this data would be a vast

improvement over the data that was collected during the 17 April 2002 experiment and

would increase confidence in the model for all speed scenarios.

The simulation presented involved ARIES receiving a simulated command from

REMUS to rendezvous at a particular place and time. It was shown that ARIES is

constrained by her velocity and acceleration and therefore will not always be able to

conform to REMUS’ command. There is no method in place for ARIES to make this

known to REMUS and propose an alternate location and/or time. Additionally, the

simulation is hard coded to ask the user to input a simulated modem command thirty

seconds into ARIES’ mission. In practice, ARIES should be able to receive a command

to rendezvous at any time during her mission. It is obvious that further study involving

the communication between vehicles is thus warranted.

50

Finally, while this simulation shows that ARIES can achieve a rendezvous in

space and time, it is only a simulation. Transforming the code contained in

finalrendezvous.m (Appendix D) into ARIES’ C programming language would be a

worthy endeavor, as the Center for AUV Research stands ready to receive their fourth

generation vehicle in the coming months. With two vehicles in operation, the work

presented here can someday be validated on the open ocean.

51

APPENDIX A. MATLAB FILE WAYPOINT.M
This appendix contains a MATLAB file written by Marco (2001) that simulates

ARIES using heading control and cross track error control for a planned path.

%File CTE_Loiter
whitebg('k');
% State = [v r psi]
clear

TRUE = 1;
FALSE = 0;

DegRad = pi/180;
RadDeg = 180/pi;
%State Model PArameters
W = 600.0;
U = 1.4*3.28;
g = 32.174;
Boy = 500.0;
xg = 0.125/12.0;
m = W/g;

rho = 1.9903;
L = 10;

Iz = (1/12)*m*(1.33^2 + 10^2); % Approx. Using I = 1/12*m*(a^2 + b^2)
Iz = Iz*5.0;
Yv_dot = -0.03430*(rho/2)*L^3;
Yr_dot = -0.00178*(rho/2)*L^4;
Yv = -0.10700*(rho/2)*L^2;
Yr = 0.01187*(rho/2)*L^3;
Ydrs = (0.01241*(rho/2)*L^2)/2.0; % Since Bow & Stern Lower Rudders Removed
Ydrb = (0.01241*(rho/2)*L^2)/2.0;
Nv_dot = -0.00178*(rho/2)*L^4;
%Nr_dot = -0.00047*(rho/2)*L^5;
Nr_dot = -Iz;
Nv = -0.00769*(rho/2)*L^3;
Nr = -0.00390*(rho/2)*L^4;
%Ndrs = -2.6496/2.0; % Since Bow & Stern Lower Rudders Removed
%Ndrb = 1.989/2.0;

% Below Modified on 7/12/00 The 3.5 and 3.4167 is the Moment Arm Length in Feet
Ndrs = -0.01241*(rho/2)*(L^2)*(3.5)/2.0; % Since Stern Lower Rudder Removed
Ndrb = 0.01241*(rho/2)*(L^2)*(3.4167)/2.0; % Since Bow Lower Rudder Removed

% Combining Stern & Bow Rudder Effectivness
Ndr = Ndrs - Ndrb;
Ydr = Ydrs - Ydrb; % Cancel Out
m1 = m - Yv_dot;
m2 = m*xg - Yr_dot;
m3 = m*xg - Nv_dot;
m4 = Iz - Nr_dot;
Y1 = Yv;
Y2 = Yr;

52

Y3 = U^2*Ydr;
N1 = Nv;
N2 = Nr;
N3 = U^2*Ndr;

A = [Y1*U Y2*U;N1*U N2*U];
B = [Y3 N3]';
M = [m1 m2;m3 m4];
A1 = inv(M)*A;
B1 = inv(M)*B;
AO = [A1(1,1) A1(1,2) 0;
 A1(2,1) A1(2,2) 0;
 0 1 0];
BO = [B1;0];

dt = 0.125;
t = [0:dt:1000]';

size(t)
% set initial conditions
start=10;
v(1) = 0.0;
r(1) = 0.0;
rRM(1) = r(1);
% This is the Initial Heading of the Vehicle
psi(1) = 50.0*DegRad;

% This is the Initial Position of the Vehicle
X(1) = -80.0; % Meters
Y(1) = 10.0;

% Convert to Feet
% this data from track.out file
No_tracks=5;
Track=[10.0 10.0 2.75 2.75 0 1.25 1.00 0 25.00 8.00 40.00
 10.0 210.0 2.75 2.75 0 1.25 1.00 0 25.00 8.00 200.00
 40.0 210.0 2.75 2.75 0 1.25 1.00 0 25.00 2.00 30.00
 40.0 10.0 2.75 2.75 0 1.25 1.00 0 25.00 2.00 200.00
 -20.0 -60.0 2.75 2.75 0 1.25 1.00 0 25.00 2.00 100.00];
track=Track(:,1:2);
SurfaceTime = Track(:,9);
SurfPhase = Track(:,8);

% readin wayopoints from track data assumes track is loaded
for j=1:No_tracks,
 X_Way_c(j) = track(j,1);
 Y_Way_c(j) = track(j,2);
end;

%Set start position
PrevX_Way_c(1) = -80.0;
PrevY_Way_c(1) = 10.0;
r_com = 0.0;
W_R = 10.0;
a = -.3;
b = (9/24)*a;

53

x(:,1) = [v(1);r(1);psi(1)];

% Below are in British Units for CTE Sliding Mode
%Lam1 = 0.75;
%Lam2 = 0.5;
Lam1 = 2.0;
Lam2 = 1.0;
Eta_FlightHeading = 1.0;
Phi_FlightHeading = 0.5;

% Below for tanh
Eta_CTE = 0.1;
Eta_CTE_Min = 1.0;
Phi_CTE = 0.5;
 Uc = [];
 Vc = [];
PLOT_PART = 0;
SegLen(1) = sqrt((X_Way_c(1)-PrevX_Way_c(1))^2+(Y_Way_c(1)-PrevY_Way_c(1))^2);
psi_track(1) = atan2(Y_Way_c(1)-PrevY_Way_c(1),X_Way_c(1)-PrevX_Way_c(1));

for j=2:No_tracks,
 SegLen(j) = sqrt((X_Way_c(j)-X_Way_c(j-1))^2+(Y_Way_c(j)-Y_Way_c(j-1))^2);
 psi_track(j) = atan2(Y_Way_c(j)-Y_Way_c(j-1),X_Way_c(j)-X_Way_c(j-1));
end;

 j=1;
 Sigma = [];
 Depth_com = [];
 dr=[];
 drl = [];
 drl(1) = 0.0;
 Depth_com(1) = 5.0;
 WayPointVertDist_com = [5.0 5.0 5.0 5.0 5.0];

SURFACE_TIMER_ACTIVE = FALSE;
for i=1:length(t)-1,
 Depth_com(i) = WayPointVertDist_com(j);
 X_Way_Error(i) = X_Way_c(j) - X(i);
 Y_Way_Error(i) = Y_Way_c(j) - Y(i);
 % DeWrap psi to within +/- 2.0*pi;
 psi_cont(i) = psi(i);
 while(abs(psi_cont(i)) > 2.0*pi)
 psi_cont(i) = psi_cont(i) - sign(psi_cont(i))*2.0*pi;
 end;
 psi_errorCTE(i) = psi_cont(i) - psi_track(j);
 % DeWrap psi_error to within +/- pi;
 while(abs(psi_errorCTE(i)) > pi)
 psi_errorCTE(i) = psi_errorCTE(i) - sign(psi_errorCTE(i))*2.0*pi;
 end;

% ** Always Calculate this
 Beta = v(i)/U;
% Beta = 0.0;
 cpsi_e = cos(psi_errorCTE(i)+Beta);
 spsi_e = sin(psi_errorCTE(i)+Beta);

54

 s(i) = [X_Way_Error(i),Y_Way_Error(i)]*...
 [(X_Way_c(j)-PrevX_Way_c(j)),(Y_Way_c(j)-PrevY_Way_c(j))]';
 % s is distance to go projected to track line(goes from 0-100%L)

 s(i) = s(i)/SegLen(j);
 Ratio=(1.0-s(i)/SegLen(j))*100.0;
% **
 % radial distance to go to next WP
 ss(i) = sqrt(X_Way_Error(i)^2 + Y_Way_Error(i)^2);
 % dp is angle between line of sight and current track line
 dp(i) = ...
 atan2((Y_Way_c(j)-PrevY_Way_c(j)),(X_Way_c(j)-PrevX_Way_c(j)))...
 - atan2(Y_Way_Error(i),X_Way_Error(i));
 if(dp(i) > pi),
 dp(i) = dp(i) - 2.0*pi;
 end;
 cte(i) = s(i)*sin(dp(i));
 if(abs(psi_errorCTE(i)) >= 40.0*pi/180.0 | s(i) < 0.0),
 % Use LOS Control
 LOS(i) = 1;
 psi_comLOS = atan2(Y_Way_Error(i),X_Way_Error(i));
 psi_errorLOS(i) = psi_comLOS - psi_cont(i);
 if(abs(psi_errorLOS(i)) > pi),
 psi_errorLOS(i) = ...
 psi_errorLOS(i) - 2.0*pi*psi_errorLOS(i)/abs(psi_errorLOS(i));
 end;
 Sigma_FlightHeading = 0.9499*(r_com - r(i)) + 0.1701*psi_errorLOS(i);
 dr(i) = -1.5435*(2.5394*r(i) ...
 + Eta_FlightHeading*tanh(Sigma_FlightHeading/Phi_FlightHeading));
 else
 % Use CTE Controller
 LOS(i) = 0;
 if(cpsi_e ~= 0.0), % Trap Div. by Zero !
% SMC Soln
 Sigma(i) = U*rRM(i)*cpsi_e + Lam1*U*spsi_e + 3.28*Lam2*cte(i);
 dr(i) = (1.0/(U*b*cpsi_e))*(-U*a*rRM(i)*cpsi_e + U*rRM(i)^2*spsi_e ...
 - Lam1*U*rRM(i)*cpsi_e - Lam2*U*spsi_e - Eta_CTE*(Sigma(i)/Phi_CTE));
 else
 dr(i) = dr(i-1);
 end;

 end; % End of CTE Controller

 % use LOS if near to loiter point

 % if (loiter==1)& s(i)<10; dr(i)=drlos(i);end;

 % Surface Phase Logic (Independent of LOS or CTE)

 if(SurfPhase(j) == TRUE)
 if(SURFACE_TIMER_ACTIVE == FALSE)
 if(Ratio > 40.0)
 % Start a Timer
 SURFACE_TIMER_ACTIVE = TRUE;
 Depth_com(i) = 0.0;
 SurfaceWait = SurfaceTime(j) + t(i);

55

 SurfaceWait
 end;
 end;
 end;

 if(SURFACE_TIMER_ACTIVE == TRUE)
 if(t(i) >= SurfaceWait)
 SURFACE_TIMER_ACTIVE = FALSE;
 Depth_com(i) = WayPointVertDist_com(j);
 SurfPhase(j) = 0;
 else
 Depth_com(i) = 0.0;
 end;
 end;

 if(abs(dr(i)) > 0.4)
 dr(i) = 0.4*sign(dr(i));
 end;

 % Model drl is the actual lagged rudder, dr is the rudder command.
 % taudr = 0.255;

 % drl(i+1) = drl(i) + dt*(dr(i)-drl(i))/taudr;
 % if(abs(drl(i)) > 0.4)
 % drl(i) = 0.4*sign(drl(i));
 % end;

 %Jay Johnson Model;
 Yv = -68.16;
 Yr = 406.3;
 Ydr = 70.0;
 Nv = -10.89;
 Nr = -88.34;
 Ndr = -35.47;
 MY = 456.76;
 IN = 215;

 M = diag([MY,IN,1]);
 AA = [Yv,Yr,0;Nv,Nr,0;0,1,0];
 BB = [Ydr;Ndr;0];
 A = inv(M)*AA;
 B = inv(M)*BB;

 % x_dot(:,i+1) = [A(1,1)*v(i) + A(1,2)*r(i) + B(1)*drl(i);
 % A(2,1)*v(i) + A(2,2)*r(i) + B(2)*drl(i);
 % r(i)];
 x_dot(:,i+1) = [A(1,1)*v(i) + A(1,2)*r(i) + B(1)*dr(i);
 A(2,1)*v(i) + A(2,2)*r(i) + B(2)*dr(i);
 r(i)];

 x(:,i+1) = x(:,i)+dt*x_dot(:,i);
 v(i+1) = x(1,i+1)/12;
 r(i+1) = x(2,i+1);
 psi(i+1) = x(3,i+1);
 rRM(i+1) = r(i+1);

56

% Added
% rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*dr(i));
% psi(i+1) = psi(i) + dt*rRM(i);

% Throw in some Waves
 %Uc(i) = -0.5*sin(2*pi*t(i)/5);
 %Vc(i) = 0.5*sin(2*pi*t(i)/5);

 %Model using system ID results from Bay tests

 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*drl(i));
 % psi(i+1) = psi(i) + dt*rRM(i);
 % side slip added proprtional to turn rate from AZORES data V in ft/sec
 % v(i+1) = 1.0*rRM(i+1)*3.28;

 Uc = 0.0;
 Vc = 0.0;

 %Kinematics
 X(i+1) = X(i) + (Uc + (U/3.28)*cos(psi(i)) - v(i)/3.28*sin(psi(i)))*dt;
 Y(i+1) = Y(i) + (Vc + (U/3.28)*sin(psi(i)) + v(i)/3.28*cos(psi(i)))*dt;

 % Check to See if we are Within the Watch_Radius

 if(sqrt(X_Way_Error(i)^2.0 + Y_Way_Error(i)^2.0) <= W_R | s(i) < 0.0),
 disp(sprintf('WayPoint %d Reached',j));
 if(j==No_tracks),
 PLOT_PART = 1;
 break;
 end;
 PrevX_Way_c(j+1) = X_Way_c(j);
 PrevY_Way_c(j+1) = Y_Way_c(j);
 j=j+1;
 end;
end;

dr(i+1) = dr(i);
cte(i+1) = cte(i);
s(i+1) = s(i);
ss(i+1) = ss(i);

if(PLOT_PART),

 figure(1);
 plot(t([1:i+1]),psi*180/pi);
 hold;
 plot(t([1:i+1]),dr*180/pi,'r');grid;
 hold;zoom on;
 figure(2);
 plot(t([1:i+1]),cte);
 hold;
 plot(t([1:i+1]),s,'r');
 plot(t([1:i+1]),ss,'g');grid;
 hold;zoom on;

57

else
 figure(1);
 plot(t,psi*180/pi);
 hold;
 plot(t,dr*180/pi,'r');
 hold;grid;
 figure(2);
 plot(t,cte);
 hold;
 plot(t,s,'r');
 plot(t,ss,'g');grid;
 hold;zoom on;
end;

 figure(3);
 plot(Y,X);grid;
 hold
 plot([Y_Way_c(1) PrevY_Way_c(1)],[X_Way_c(1) PrevX_Way_c(1)],'r');
 for ii=2:No_tracks,
 plot([Y_Way_c(ii) Y_Way_c(ii-1)],[X_Way_c(ii) X_Way_c(ii-1)],'r');
 end;
 hold;zoom on;

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

APPENDIX B. MATLAB FILE RENDEZVOUS.M
This appendix contains a MATLAB file based on the file in appendix A that

simulates ARIES receiving a modem command thirty seconds into her planned mission

for her to rendezvous at a specific location.
% This file has a pre-defined track.out file in it. 30 seconds into the
% simulation, the user is asked if ARIES should be diverted to a
% rendezvous point. If the answer is 'yes', the user is prompted to enter
% a new track.out file that consists of one row (This simulates an acoustic
% modem command). The simulation will show ARIES aborts the planned track
% and goes to the directed rendezvous point. If the answer is 'no' to the
% query concerning the rendezvous point, the mission continues as planned.

% All equation numbers (i.e, Eq (#)) refer to equations presented in Marco
% Healey’s “Command, Control and Navigation Experimental Results
% With the NPS ARIES AUV”

% 06 Feb 2002

whitebg('k');
% State = [v r psi]
clear
TRUE = 1;
FALSE = 0;

% Converts Degrees to Radians & Radians to Degrees

DegRad = pi/180;
RadDeg = 180/pi;

% State Model Parameters

W = 600.0; % Weight in LB
U = 1.4*3.28; % Forward Speed ?
g = 32.174; % Gravity in ft/sec^2
Boy = 500.0; % Bouyancy ?
xg = 0.125/12.0; % ??
m = W/g; % Mass
rho = 1.9903; % Density of Seawater in slugs/ft^3
L = 10; % Length in ft of ARIES
Iz = (1/12)*m*(1.33^2 + 10^2); % Approx. Using I = 1/12*m*(a^2 + b^2)
 % where a is width & b is length
Iz = Iz*5.0;

% Coefficients

Yv_dot = -0.03430*(rho/2)*L^3; % Added Mass in Sway Coefficient.
Yr_dot = -0.00178*(rho/2)*L^4; % Added Mass in Yaw Coefficient.
Yv = -0.10700*(rho/2)*L^2; % Coeff. of Sway Force induced by Side Slip
Yr = 0.01187*(rho/2)*L^3; % Coeff. of Sway Force induced by Yaw
Ydrs = (0.01241*(rho/2)*L^2)/2.0; % Since Bow & Stern Lower Rudders Removed
Ydrb = (0.01241*(rho/2)*L^2)/2.0; % So don't use these equations

Nv_dot = -0.00178*(rho/2)*L^4; % Added Mass Moment of Inertia in Sway Coeff

60

%Nr_dot = -0.00047*(rho/2)*L^5;
Nr_dot = -Iz; % Added Mass Moment of Inertia in Yaw Coeff
Nv = -0.00769*(rho/2)*L^3; % Coeff. of Sway Moment from Side Slip
Nr = -0.00390*(rho/2)*L^4; % Coeff. of Sway Moment from Yaw
%Ndrs = -2.6496/2.0; % Since Bow & Stern Lower Rudders Removed
%Ndrb = 1.989/2.0;

% Below Modified on 7/12/00 The 3.5 and 3.4167 is the Moment Arm Length
% in Feet - Since Bow & Stern Lower Rudders Removed

Ndrs = -0.01241*(rho/2)*(L^2)*(3.5)/2.0;
Ndrb = 0.01241*(rho/2)*(L^2)*(3.4167)/2.0;

% Combining Stern & Bow Rudder Effectivness

Ndr = Ndrs - Ndrb;
Ydr = Ydrs - Ydrb; % Cancel Out

% Matrices

m1 = m - Yv_dot;
m2 = m*xg - Yr_dot;
m3 = m*xg - Nv_dot;
m4 = Iz - Nr_dot;
Y1 = Yv;
Y2 = Yr;
Y3 = U^2*Ydr;
N1 = Nv;
N2 = Nr;
N3 = U^2*Ndr;
A = [Y1*U Y2*U;N1*U N2*U];
B = [Y3 N3]';
M = [m1 m2;m3 m4];
A1 = inv(M)*A;
B1 = inv(M)*B;
AO = [A1(1,1) A1(1,2) 0;
 A1(2,1) A1(2,2) 0;
 0 1 0];
BO = [B1;0];
dt = 0.125;
t = [0:dt:1000]';
size(t);

% Set initial conditions

start=10;
v(1) = 0.0; % Initial Side Slip Velocity
r(1) = 0.0; % Initial Yaw
rRM(1) = r(1);
psi(1) = 50.0*DegRad; % Initial Heading of ARIES
X(1) = -80.0; % Initial Position in Feet
Y(1) = 10.0;

% Convert to Feet ?

% This data from track.out file

61

No_tracks=5; % Sets # of Tracks = # of Rows

Track=[10.0 10.0 2.75 2.75 0 1.25 1.00 0 25.00 8.00 40.00
 10.0 210.0 2.75 2.75 0 1.25 1.00 0 25.00 8.00 200.00
 40.0 210.0 2.75 2.75 0 1.25 1.00 0 25.00 2.00 30.00
 40.0 10.0 2.75 2.75 0 1.25 1.00 0 25.00 2.00 200.00
 -20.0 -60.0 2.75 2.75 0 1.25 1.00 0 25.00 2.00 100.00];

track=Track(:,1:2); % Defines track as Track(X,Y)
SurfaceTime = Track(:,9); % Col 9 of Track is Surface Time for Pop-up
SurfPhase = Track(:,8); % Col 8 of Track designates if Pop-up

% Read in wayopoints from track data assumes track is loaded

for j=1:No_tracks,
 X_Way_c(j) = track(j,1);
 Y_Way_c(j) = track(j,2);
end;

% Set start position

PrevX_Way_c(1) = -80.0;
PrevY_Way_c(1) = 10.0;
r_com = 0.0;
W_R = 10.0; % Sets initial Watch Radius
a = -.3;
b = (9/24)*a;
x(:,1) = [v(1);r(1);psi(1)];

% Below are in British Units for CTE Sliding Mode
%Lam1 = 0.75;
%Lam2 = 0.5;
Lam1 = 2.0;
Lam2 = 1.0;
Eta_FlightHeading = 1.0;
Phi_FlightHeading = 0.5;

% Below for tanh

Eta_CTE = 0.1;
Eta_CTE_Min = 1.0;
Phi_CTE = 0.5;
Uc = [];
Vc = [];
PLOT_PART = 0; disp(sprintf('PLOT_PART = 0'));

% Total Track Length between initial waypoint and waypoint (1)

SegLen(1) = sqrt((X_Way_c(1)-PrevX_Way_c(1))^2+(Y_Way_c(1)...
 -PrevY_Way_c(1))^2);

% Track Angle of first track

psi_track(1) = atan2(Y_Way_c(1)-PrevY_Way_c(1),X_Way_c(1)-PrevX_Way_c(1));

62

% Computes track lengths and track angles for each track

for j=2:No_tracks,
 SegLen(j) = sqrt((X_Way_c(j)-X_Way_c(j-1))^2+(Y_Way_c(j)-...
 Y_Way_c(j-1))^2);
 psi_track(j) = atan2(Y_Way_c(j)-Y_Way_c(j-1),X_Way_c(j)-X_Way_c(j-1));
end;
j=1;
Sigma = [];
Depth_com = [];
dr=[];
drl = [];
drl(1) = 0.0;
Depth_com(1) = 5.0;
WayPointVertDist_com = [5.0 5.0 5.0 5.0 5.0];
SURFACE_TIMER_ACTIVE = FALSE;

% Starts a loop that computes values for each data point corresponding to
% a time value (in this case, every 0.125 seconds from 1 to 1000 seconds)

for i=1:length(t)-1,
 Depth_com(i) = WayPointVertDist_com(j);

% Difference between current vehicle position & the next waypoint Eq(13)

 X_Way_Error(i) = X_Way_c(j) - X(i);
 Y_Way_Error(i) = Y_Way_c(j) - Y(i);

% DeWrap psi to within +/- 2.0*pi; Makes Heading Angle to lie between
% 0-360 degrees

 psi_cont(i) = psi(i);
 while(abs(psi_cont(i)) > 2.0*pi)
 psi_cont(i) = psi_cont(i) - sign(psi_cont(i))*2.0*pi;
 end;

% Cross Track Heading Error Eq(12)

 psi_errorCTE(i) = psi_cont(i) - psi_track(j);

% DeWrap psi_error to within +/- pi; Normalized to Lie between +/- 180
% degrees

 while(abs(psi_errorCTE(i)) > pi)
 psi_errorCTE(i) = psi_errorCTE(i) - sign(psi_errorCTE(i))*2.0*pi;
 end;

% ** Always Calculate this (What is This?)
 Beta = v(i)/U;
% Beta = 0.0;
 cpsi_e = cos(psi_errorCTE(i)+Beta);
 spsi_e = sin(psi_errorCTE(i)+Beta);

% Distance to the ith way point projected to the track line S(t)i -
% Eq (14)

63

 s(i) = [X_Way_Error(i),Y_Way_Error(i)]*[(X_Way_c(j)-...
 PrevX_Way_c(j)),(Y_Way_c(j)-PrevY_Way_c(j))]';

% s is distance to go projected to track line(goes from 0-100%L) - Eq (14)

 s(i) = s(i)/SegLen(j);
 Ratio=(1.0-s(i)/SegLen(j))*100.0; % Ranges from 0-100% of SegLen

% Radial distance to go to next WP

 ss(i) = sqrt(X_Way_Error(i)^2 + Y_Way_Error(i)^2);

% dp is angle between line of sight and current track line - Eq (16)

 dp(i) = atan2((Y_Way_c(j)-PrevY_Way_c(j)),(X_Way_c(j)-...
 PrevX_Way_c(j)))- atan2(Y_Way_Error(i),X_Way_Error(i));
 if(dp(i) > pi),
 dp(i) = dp(i) - 2.0*pi;
 end;

% Cross Track Error Definition - Eq (15)

 cte(i) = s(i)*sin(dp(i));

% If the magnitude of the CTE Heading exceeds 40 degrees, a LOS Controller
% is used.

 if(abs(psi_errorCTE(i)) >= 40.0*pi/180.0 | s(i) < 0.0),
 LOS(i) = 1;
 psi_comLOS = atan2(Y_Way_Error(i),X_Way_Error(i)); % Eq (22)
 psi_errorLOS(i) = psi_comLOS - psi_cont(i); % Eq (23)
 % LOS Error
 if(abs(psi_errorLOS(i)) > pi),
 psi_errorLOS(i) = psi_errorLOS(i) - 2.0*pi*psi_errorLOS(i)...
 /abs(psi_errorLOS(i));
 end;

% Eq (8)

 Sigma_FlightHeading = 0.9499*(r_com - r(i)) + 0.1701*psi_errorLOS(i);

% Eq (9)

 dr(i) = -1.5435*(2.5394*r(i)+ Eta_FlightHeading*tanh...
 (Sigma_FlightHeading/Phi_FlightHeading));

 else

% Use CTE Controller if CTE Heading is less than 40 degrees

 LOS(i) = 0;
 if(cpsi_e ~= 0.0), % Trap Div. by Zero !

% SMC Soln

% Sliding Surface - Eq (20)

64

 Sigma(i) = U*rRM(i)*cpsi_e + Lam1*U*spsi_e + 3.28*Lam2*cte(i);

% Rudder Input - Eq (21)

 dr(i) = (1.0/(U*b*cpsi_e))*(-U*a*rRM(i)*cpsi_e + U*rRM(i)^2*...
 spsi_e - Lam1*U*rRM(i)*cpsi_e - Lam2*U*spsi_e - Eta_CTE* ...
 (Sigma(i)/Phi_CTE));
 else
 dr(i) = dr(i-1);
 end;
 end; % End of CTE Controller

 % Use LOS if near to loiter point
 % if (loiter==1)& s(i)<10; dr(i)=drlos(i);end;

 % Surface Phase Logic (Independent of LOS or CTE)

 if(SurfPhase(j) == TRUE)
 if(SURFACE_TIMER_ACTIVE == FALSE)
 if(Ratio > 40.0)
 % Start a Timer
 SURFACE_TIMER_ACTIVE = TRUE;
 Depth_com(i) = 0.0;
 SurfaceWait = SurfaceTime(j) + t(i);
 SurfaceWait
 end;
 end;
 end;
 if(SURFACE_TIMER_ACTIVE == TRUE)
 if(t(i) >= SurfaceWait)
 SURFACE_TIMER_ACTIVE = FALSE;
 Depth_com(i) = WayPointVertDist_com(j);
 SurfPhase(j) = 0;
 else
 Depth_com(i) = 0.0;
 end;
 end;
 if(abs(dr(i)) > 0.4)
 dr(i) = 0.4*sign(dr(i));
 end;

 % Model drl is the actual lagged rudder, dr is the rudder command.
 % taudr = 0.255;

 % drl(i+1) = drl(i) + dt*(dr(i)-drl(i))/taudr;
 % if(abs(drl(i)) > 0.4)
 % drl(i) = 0.4*sign(drl(i));
 % end;

 % Jay Johnson Model

 Yv = -68.16;
 Yr = 406.3;
 Ydr = 70.0;
 Nv = -10.89;

65

 Nr = -88.34;
 Ndr = -35.47;

 MY = 456.76;
 IN = 215;

 M = diag([MY,IN,1]);
 AA = [Yv,Yr,0;Nv,Nr,0;0,1,0];
 BB = [Ydr;Ndr;0];
 A = inv(M)*AA;
 B = inv(M)*BB;

 % x_dot(:,i+1) = [A(1,1)*v(i) + A(1,2)*r(i) + B(1)*drl(i);
 % A(2,1)*v(i) + A(2,2)*r(i) + B(2)*drl(i);
 % r(i)];
 x_dot(:,i+1) = [A(1,1)*v(i) + A(1,2)*r(i) + B(1)*dr(i);
 A(2,1)*v(i) + A(2,2)*r(i) + B(2)*dr(i);
 r(i)];

 x(:,i+1) = x(:,i)+dt*x_dot(:,i);
 v(i+1) = x(1,i+1)/12;
 r(i+1) = x(2,i+1);
 psi(i+1) = x(3,i+1);
 rRM(i+1) = r(i+1);

 % Added
 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*dr(i));
 % psi(i+1) = psi(i) + dt*rRM(i);

 % Throw in some Waves
 % Uc(i) = -0.5*sin(2*pi*t(i)/5);
 % Vc(i) = 0.5*sin(2*pi*t(i)/5);

 % Model using system ID results from Bay tests

 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*drl(i));
 % psi(i+1) = psi(i) + dt*rRM(i);
 % side slip added proprtional to turn rate from AZORES data V in ft/sec
 % v(i+1) = 1.0*rRM(i+1)*3.28;

 Uc = 0.0;
 Vc = 0.0;

 % Kinematics

 X(i+1) = X(i) + (Uc + (U/3.28)*cos(psi(i)) - v(i)/3.28*sin(psi(i)))*dt;
 Y(i+1) = Y(i) + (Vc + (U/3.28)*sin(psi(i)) + v(i)/3.28*cos(psi(i)))*dt;

%**

% This should abort @ 30 seconds if input is empty or 'Y'
% This modification done on 05 Feb 2002 - original file is waypoint1.m

 if i == 240,
 K = input('Is Rendezvous Required? (Enter 1 for Yes, 0 for No)-->>');
 if isempty(K)==1; K = 1; break; end;

66

 if K == 1; break;
 else i = i; end;
 end

%**

 % Check to See if we are Within the Watch_Radius

 if(sqrt(X_Way_Error(i)^2.0 + Y_Way_Error(i)^2.0) <= W_R | s(i) < 0.0),
 disp(sprintf('WayPoint %d Reached',j));
 if(j==No_tracks),
 PLOT_PART = 1;
 disp(sprintf('PLOT_PART = 1'));
 break;
 end;
 PrevX_Way_c(j+1) = X_Way_c(j);
 PrevY_Way_c(j+1) = Y_Way_c(j);
 j=j+1;
 end;
end;

%**

% Requests Rendezvous Point Information
% This modification done on 05 Feb 2002 - original file waypoint2.m

if j == No_tracks,
 disp(sprintf('Mission Complete'));
else
new_r_com = 0.0;
new_v(1) = v(i+1);
new_r(1) = r(i+1);
new_rRM(1) = new_r(1);
new_psi(1) = psi(i+1);
New_X(1) = X(i+1);
New_Y(1) = Y(i+1);
New_No_Tracks = 1;
New_Track = input('Enter 11 Column Track, i.e., [1 1 ...]-->>');
new_track = New_Track(:,1:2);
new_SurfaceTime = New_Track(:,9);
new_Surfphase = New_Track(:,8);
for jj = 1:New_No_Tracks,
 New_X_Way_c(jj) = new_track(jj,1);
 New_Y_Way_c(jj) = new_track(jj,2);
end;
New_PrevX_Way_c(1) = X(i+1); % Sets Abort Posit as start of new
New_PrevY_Way_c(1) = Y(i+1); % track.
% Below for tanh
new_Eta_CTE = 0.1;
new_Eta_CTE_Min = 1.0;
new_Phi_CTE = 0.5;
PLOT_PART = 0; disp(sprintf('PLOT_PART = 0'));
new_x(:,1) = [new_v(1); new_r(1); new_psi(1)];

% Total Track Length between abort point and rendezvous point

67

New_SegLen(1) = sqrt((New_X_Way_c(1)-New_PrevX_Way_c(1))^2+...
 (New_Y_Way_c(1) - New_PrevY_Way_c(1))^2);

% Track Angle of track between abort point and rendezvous point

new_psi_track(1) = atan2(New_Y_Way_c(1)-New_PrevY_Way_c(1),...
 New_X_Way_c(1)-New_PrevX_Way_c(1));

% Starts loop that computes values for each data point corresponding to a
% time value along new track

jj=1;
new_Sigma = [];
new_Depth_com = [];
new_dr=[];
new_drl = [];
new_drl(1) = 0.0;
new_Depth_com(1) = 5.0;
new_WayPointVertDist_com = [5.0 5.0 5.0 5.0 5.0];
new_SURFACE_TIMER_ACTIVE = FALSE;
tt = [t(i+1):dt:500]';
size(tt);
for ii = 1:length(tt)-1,
 new_Depth_com(ii) = new_WayPointVertDist_com(jj);
 New_X_Way_Error(ii) = New_X_Way_c(jj) - New_X(ii);
 New_Y_Way_Error(ii) = New_Y_Way_c(jj) - New_Y(ii);
 new_psi_cont(ii) = new_psi(ii);
 while(abs(new_psi_cont(ii)) > 2.0*pi)
 new_psi_cont(ii) = new_psi_cont(ii) - sign(new_psi_cont(ii))*...
 2.0*pi;
 end;

% Cross Track Heading Error Eq(12)

 new_psi_errorCTE(ii) = new_psi_cont(ii) - new_psi_track(jj);

% DeWrap psi_error to within +/- pi; Normalized to Lie between +/- 180
% degrees

 while(abs(new_psi_errorCTE(ii)) > pi)
 new_psi_errorCTE(ii) = new_psi_errorCTE(ii) - sign(...
 new_psi_errorCTE(ii))*2.0*pi;
 end;

% ** Always Calculate this (What is This?)
 new_Beta = new_v(ii)/U;
% Beta = 0.0;
 new_cpsi_e = cos(new_psi_errorCTE(ii)+new_Beta);
 new_spsi_e = sin(new_psi_errorCTE(ii)+new_Beta);

% Distance to the ith way point projected to the track line S(t)i -
% Eq (14)

 new_s(ii) = [New_X_Way_Error(ii),New_Y_Way_Error(ii)]*[(...
 New_X_Way_c(jj)-New_PrevX_Way_c(jj)),(New_Y_Way_c(jj)...
 -New_PrevY_Way_c(jj))]';

68

% s is distance to go projected to track line(goes from 0-100%L) - Eq (14)

 new_s(ii) = new_s(ii)/New_SegLen(jj);
 % Ranges from 0-100% of SegLen
 Ratio=(1.0-new_s(ii)/New_SegLen(jj))*100.0;

% Radial distance to go to next WP

 new_ss(ii) = sqrt(New_X_Way_Error(ii)^2 + New_Y_Way_Error(ii)^2);

% dp is angle between line of sight and current track line - Eq (16)

 new_dp(ii) = atan2((New_Y_Way_c(jj)-New_PrevY_Way_c(jj)),(...
 New_X_Way_c(jj)-New_PrevX_Way_c(jj)))- atan2...
 (New_Y_Way_Error(ii),New_X_Way_Error(ii));
 if(new_dp(ii) > pi),
 new_dp(ii) = new_dp(ii) - 2.0*pi;
 end;

% Cross Track Error Definition - Eq (15)

 new_cte(ii) = new_s(ii)*sin(new_dp(ii));

% If the magnitude of the CTE Heading exceeds 40 degrees, a LOS Controller
% is used.

 if(abs(new_psi_errorCTE(ii)) >= 40.0*pi/180.0 | new_s(ii) < 0.0),
 new_LOS(ii) = 1;
 new_psi_comLOS = atan2(New_Y_Way_Error(ii),New_X_Way_Error(ii));
 new_psi_errorLOS(ii) = new_psi_comLOS - new_psi_cont(ii);
 if(abs(new_psi_errorLOS(ii)) > pi),
 new_psi_errorLOS(ii) = new_psi_errorLOS(ii) - 2.0*pi*...
 new_psi_errorLOS(ii)/abs(new_psi_errorLOS(ii));
 end;

% Eq (8)

 new_Sigma_FlightHeading = 0.9499*(new_r_com - new_r(ii)) +...
 0.1701*new_psi_errorLOS(ii);

% Eq (9)

 new_dr(ii) = -1.5435*(2.5394*new_r(ii)+ Eta_FlightHeading*tanh...
 (new_Sigma_FlightHeading/Phi_FlightHeading));

 else

% Use CTE Controller if CTE Heading is less than 40 degrees

 new_LOS(ii) = 0;
 if(new_cpsi_e ~= 0.0), % Trap Div. by Zero !

% SMC Soln

% Sliding Surface - Eq (20)

69

 new_Sigma(ii) = U*new_rRM(ii)*new_cpsi_e + Lam1*U*new_spsi_e...
 + 3.28*Lam2*new_cte(ii);

% Rudder Input - Eq (21)

 new_dr(ii) = (1.0/(U*b*new_cpsi_e))*(-U*a*new_rRM(ii)*...
 new_cpsi_e + U*new_rRM(ii)^2*new_spsi_e - Lam1*U*...
 new_rRM(ii)*new_cpsi_e - Lam2*U*new_spsi_e - new_Eta_CTE* ...
 (new_Sigma(ii)/new_Phi_CTE));
 else
 new_dr(ii) = new_dr(ii-1);
 end;
 end; % End of CTE Controller

 % Use LOS if near to loiter point
 % if (loiter==1)& new_s(ii)<10; new_dr(ii)=new_drlos(ii);end;

 % Surface Phase Logic (Independent of LOS or CTE)

 if(SurfPhase == TRUE)
 if(new_SURFACE_TIMER_ACTIVE == FALSE)
 if(Ratio > 40.0)
 % Start a Timer
 new_SURFACE_TIMER_ACTIVE = TRUE;
 new_Depth_com(ii) = 0.0;
 new_SurfaceWait = new_SurfaceTime(1) + tt(ii);
 new_SurfaceWait
 end;
 end;
 end;
 if(new_SURFACE_TIMER_ACTIVE == TRUE)
 if(tt(ii) >= new_SurfaceWait)
 new_SURFACE_TIMER_ACTIVE = FALSE;
 new_Depth_com(ii) = new_WayPointVertDist_com(1);
 new_SurfPhase(1) = 0;
 else
 new_Depth_com(ii) = 0.0;
 end;
 end;
 if(abs(new_dr(ii)) > 0.4)
 new_dr(ii) = 0.4*sign(new_dr(ii));
 end;

 % Model drl is the actual lagged rudder, dr is the rudder command.
 % taudr = 0.255;

 % drl(i+1) = drl(i) + dt*(dr(i)-drl(i))/taudr;
 % if(abs(drl(i)) > 0.4)
 % drl(i) = 0.4*sign(drl(i));
 % end;
 new_x_dot(:,ii+1) = [A(1,1)*new_v(ii) + A(1,2)*new_r(ii) + B(1)*...
 new_dr(ii); A(2,1)*new_v(ii) + A(2,2)*new_r(ii) + B(2)*...
 new_dr(ii); new_r(ii)];
 new_x(:,ii+1) = new_x(:,ii)+dt*new_x_dot(:,ii);
 new_v(ii+1) = new_x(1,ii+1)/12;

70

 new_r(ii+1) = new_x(2,ii+1);
 new_psi(ii+1) = new_x(3,ii+1);
 new_rRM(ii+1) = new_r(ii+1);

 % Added
 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*dr(i));
 % psi(i+1) = psi(i) + dt*rRM(i);

 % Throw in some Waves
 % Uc(i) = -0.5*sin(2*pi*t(i)/5);
 % Vc(i) = 0.5*sin(2*pi*t(i)/5);

 % Model using system ID results from Bay tests

 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*drl(i));
 % psi(i+1) = psi(i) + dt*rRM(i);
 % side slip added proprtional to turn rate from AZORES data V in ft/sec
 % v(i+1) = 1.0*rRM(i+1)*3.28;

 Uc = 0.0;
 Vc = 0.0;

 % Kinematics

 New_X(ii+1) = New_X(ii) + (Uc + (U/3.28)*cos(new_psi(ii)) - new_v(ii)...
 /3.28*sin(new_psi(ii)))*dt;
 New_Y(ii+1) = New_Y(ii) + (Vc + (U/3.28)*sin(new_psi(ii)) + new_v(ii)...
 /3.28*cos(new_psi(ii)))*dt;

 % Check to See if we are Within the Watch_Radius (set to 1 foot here)

 if(sqrt(New_X_Way_Error(ii)^2.0 + New_Y_Way_Error(ii)^2.0)...
 <= 1 | new_s(ii) < 0.0),

 % Next Line ends mission if within Watch Radius.

 disp(sprintf('WayPoint %d Reached',jj)); break;
 if(jj==No_tracks),
 PLOT_PART = 2;
 disp(sprintf('PLOT_PART = 2'));
 break;
 end;
 New_PrevX_Way_c(jj+1) = New_X_Way_c(jj);
 New_PrevY_Way_c(jj+1) = New_Y_Way_c(jj);
 end;
end
end
%**
dr(i+1) = dr(i);
cte(i+1) = cte(i);
s(i+1) = s(i);
ss(i+1) = ss(i);

%new_dr(ii+1) = new_dr(ii);
%new_cte(ii+1) = new_cte(ii);
%new_s(ii+1) = new_s(ii);

71

%new_ss(ii+1) = new_ss(ii);

% Plotting

if PLOT_PART == 1,

 % Plot of Time vs Rudder Angle & Vehicle Heading

 figure(1);
 plot(t([1:i+1]),psi*180/pi);
 hold;
 plot(t([1:i+1]),dr*180/pi,'r:');grid;
 title('Time vs Rudder Angle and Vehicle Heading');
 xlabel('Time (sec)'); ylabel('Rudder Angle/Vehicle Heading (degrees)');
 legend('Vehicle Heading', 'Rudder Angle');
 print -tiff -depsc figure1b
 hold;zoom on;

 % Plot of Time vs CTE, Distance to Go to Projected Track, Radial
 % Distance to Next Waypoint

 figure(2);
 plot(t([1:i+1]),cte);
 hold;
 plot(t([1:i+1]),s,'r:');
 plot(t([1:i+1]),ss,'g--');grid;
 title('Time vs Cross Track Error')
 xlabel('Time (sec)');ylabel('Distance (feet)');
 legend('Cross Track Error', 'Distance to Go Projected to Track', ...
 'Radial Distance to Go to Next Way Point');
 print -tiff -depsc figure2b
 hold;zoom on;

elseif PLOT_PART == 0,

 % Plot of Time vs Rudder Angle & Vehicle Heading for Rendezvous Mission

 figure(3);
 plot(t([1:i+1]),psi*180/pi, 'y');
 hold;
 plot(tt([1:ii+1]),new_psi*180/pi, 'y:');
 plot(t([1:i+1]),dr*180/pi,'r');
 plot(tt([1:ii]),new_dr*180/pi, 'r:');
 title('Time vs Rudder Angle and Vehicle Heading - 0');
 xlabel('Time (sec)'); ylabel('Rudder Angle/Vehicle Heading (degrees)');
 legend('Vehicle Heading Before Mission Abort',...
 'Vehicle Heading After Mission Abort',...
 'Rudder Angle Before Mission Abort',...
 'Rudder Angle After Mission Abort');
 print -tiff -depsc figure3b
 hold;grid;

 % Plot of Time vs CTE, Distance to Go to Projected Track, Radial
 % Distance to Next Waypoint for Rendezvous Mission

 figure(4);

72

 plot(t([1:i+1]), cte, 'y');
 hold;
 plot(tt([1:ii]), new_cte, 'y:');
 plot(t([1:i+1]), s,'r');
 plot(tt([1:ii]), new_s, 'r:');
 plot(t([1:i+1]), ss,'g');grid;
 plot(tt([1:ii]), new_ss, 'g:');
 title('Time vs Cross Track Error - 0')
 xlabel('Time (sec)'); ylabel('Distance (feet)');
 legend('Cross Track Error Before Abort',...
 'Cross Track Error After Abort',...
 'Distance to Go Projected to Track Before Abort', ...
 'Distance to Go Projected to Track After Abort',...
 'Radial Distance to Go to Next Way Point Before Abort',...
 'Radial Distance to Go to Next Way Point After Abort');
 print -tiff -depsc figure4b
 hold;zoom on;

end;

 % Plot of Actual Track and Planned Track
 % Modified on 05 Feb 2002 - To include waypoint2.m modifications.

 if PLOT_PART == 1,
 figure(5);
 plot(Y,X,'b--');grid; % Actual Track
 title('ARIES Track - Actual and Planned');
 xlabel('Y (feet)');ylabel('X (feet)');
 hold;

 % Planned Track
 plot([Y_Way_c(1) PrevY_Way_c(1)],[X_Way_c(1) PrevX_Way_c(1)],'r');
 for ii=2:No_tracks,
 plot([Y_Way_c(ii) Y_Way_c(ii-1)],[X_Way_c(ii) X_Way_c(ii-1)],'r');
 end;
 legend('Actual Track', 'Planned Track',4);
 print -tiff -depsc figure5b
 hold; zoom on

 elseif PLOT_PART == 0 | PLOT_PART == 2,

 % Plot of Planned Track, Track after Mission Change, Rendezvous
 % Point and Initial Track

 figure(6);
 plot(Y,X,'b--');grid; % Actual Track
 title('ARIES Track - Actual and Planned');
 xlabel('Y (feet)');ylabel('X (feet)');
 hold;
 plot(New_Y, New_X,'g-.');
 plot(New_Y_Way_c, New_X_Way_c,'d');

 % Planned Track
 plot([Y_Way_c(1) PrevY_Way_c(1)],[X_Way_c(1) PrevX_Way_c(1)],'r');
 for ii=2:No_tracks,
 plot([Y_Way_c(ii) Y_Way_c(ii-1)],[X_Way_c(ii) X_Way_c(ii-1)],'r');

73

 end;
 legend('Initial Track', 'Track After Mission Change'...
 , 'Rendezvous Point', 'Planned Track',4);
 AXIS([-100 250 -80 60])
 print -tiff -depsc figure6b
 hold; zoom on
% plot([Y_Way_c(2) Y_Way_c(1)],[X_Way_c(2) X_Way_c(1)],'r');
% plot([Y_Way_c(3) Y_Way_c(2)],[X_Way_c(3) X_Way_c(2)],'r');
% plot([Y_Way_c(4) Y_Way_c(3)],[X_Way_c(4) X_Way_c(3)],'r');
% plot([Y_Way_c(5) Y_Way_c(4)],[X_Way_c(5) X_Way_c(4)],'r');
end

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

APPENDIX C. MATLAB FILE COEFFICIENTS.M
This appendix contains a MATLAB file that finds the coefficients of the

longitudinal equation of motion using the method of least squares. It then disregards

those values and uses the hand-manipulated values in order to produce a model for speed.
% This version doubles all the RPS values based on the Tecnadyne Data.

% Loads the 3 .d files from the experiment conducted on 17APR02.

load d041702_03.d;
load d041702_04.d;
load d041702_05.d;
a = d041702_03; % 1st run
b = d041702_04; % 2nd run
c = d041702_05; % 3rd run

% a(:,31) is left screw voltage for 1st run
% a(:,32) is right screw voltage for 1st run
% a(:,17) is u in m/s

% First Calculate Average Thruster RPS

a(:,39) = ((a(:,31)*133.8047)+(a(:,32)*124.4615))/60; %Avg rps, Run 1
b(:,39) = ((b(:,31)*133.8047)+(b(:,32)*124.4615))/60; %Avg rps, Run 2
c(:,39) = ((c(:,31)*133.8047)+(c(:,32)*124.4615))/60; %Avg rps, Run 3

[j,k] = size(a); % Figures size of data matrices
[jj, kk] = size(b);
[jjj, kkk] = size(c);

u1 = []; u2 = []; u3 =[]; uu1 =[]; uu2 = []; uu3 =[];
y1 = []; y2 = []; y3 = [];

%..

% EOM for Longitudinal Motion:

% (m-X_udot_r)udot_r = [X_u * u_r * abs(u_r)] + [alpha * n * abs(n)] -
% [gamma * abs(n) * u_r]

% (m-X_udot_r) = 215.47 kg ==>> z = 1/(m-X_udot_r) = 0.004641

% udot_r = (u_r(t+1) - u_r(t))/dt therefore,

% u_r(t+1) - u_r(t) = (z*dt)[(X_u * f(u_r)) + (alpha * n * abs(n)) -
% (gamma * n * abs(u_r))

% dt = 0.125 ==>> (z*dt) = 0.004641 * 0.125.

% In matrix form: y = H * Theta

% where H = (z*dt)[f(u_r) n*abs(n) n*abs(u_r)] and Theta = [X alpha gamma]'
% and y = u_r(t+1) - u_r(t)

76

z = 0.004641;
dt = 0.125;

% Calculations for Run 1

for n1 = 2:j;
 u1(n1-1) = a(n1,17); % u_r(t+1)
 n1 = n1+1;
end

u1 = u1'; % Makes u1 a j-1 x 1 matrix

H11 = []; H12 = []; H13 = []; H1 = [];

for nn1 = 1:j-1;
 H11(nn1) = (z*dt) * (a(nn1,17)*abs(a(nn1,17)));
 H12(nn1) = (z*dt) * (a(nn1,39)* abs(a(nn1,39)));
 H13(nn1) = (z*dt) * (a(nn1,17)*abs(a(nn1,39)));
 uu1(nn1) = a(nn1,17); % u_r(t)
 nn1 = nn1+1;
end

uu1 = uu1'; % Makes uu1 a j-1 x 1 matrix
y1 = u1-uu1; % y = u_r(t+1) - u_r(t)
H1 = [H11' H12' H13']; % Makes H a j-1 x 3 matrix

theta_hat1 = inv(H1' * H1) * H1' * y1; % 3 x 1 matrix
error1 = y1 - (H1 * theta_hat1);
%..

% Calculations for Run 2

for n2 = 2:jj;
 u2(n2-1) = b(n2,17); % u_r(t+1)
 n2 = n2+1;
end

u2 = u2'; % Makes u2 a jj-1 x 1 matrix

H21 = []; H22 = []; H23 = []; H2 = [];

for nn2 = 1:jj-1;
 H21(nn2) = (z*dt) * (b(nn2,17)*abs(b(nn2,17)));
 H22(nn2) = (z*dt) * (b(nn2,39)*abs(b(nn2,39)));
 H23(nn2) = (z*dt) * (b(nn2,17)*abs(b(nn2,39)));
 uu2(nn2) = b(nn2,17); % u_r(t)
 nn2 = nn2+1;
end

uu2 = uu2'; % Makes uu2 a jj-1 x 1 matrix
y2 = u2-uu2; % y = u_r(t+1) - u_r(t)
H2 = [H21' H22' H23']; % Makes H a jj-1 x 3 matrix

theta_hat2 = inv(H2' * H2) * H2' * y2; % 3 x 1 matrix
error2 = y2 - (H2 * theta_hat2);
%..

77

% Calculations for Run 3

for n3 = 2:jjj;
 u3(n3-1) = c(n3,17); % u_r(t+1)
 n3 = n3+1;
end

u3 = u3'; % Makes u3 a jjj-1 x 1 matrix

H31 = []; H32 = []; H33 = []; H3 = [];

for nn3 = 1:jjj-1;
 H31(nn3) = (z*dt) * (c(nn3,17)*abs(c(nn3,17)));
 H32(nn3) = (z*dt) * (c(nn3,39)*abs(c(nn3,39)));
 H33(nn3) = (z*dt) * (c(nn3,17)*abs(c(nn3,39)));
 uu3(nn3) = c(nn3,17); % u_r(t)
 nn3 = nn3+1;
end

uu3 = uu3'; % Makes uu3 a jjj-1 x 1 matrix
y3 = u3-uu3; % y = u_r(t+1) - u_r(t)
H3 = [H31' H32' H33']; % Makes H a jjj-1 x 3 matrix

theta_hat3 = inv(H3' * H3) * H3' * y3; % 3 x 1 matrix
error3 = y3 - (H3 * theta_hat3);

%..

% Summary of coefficients for all 3 runs and average value.

avg =[];
format
avg_X = (theta_hat1(1,1) + theta_hat2(1,1) + theta_hat3(1,1))/3;
avg_a = (theta_hat1(2,1) + theta_hat2(2,1) + theta_hat3(2,1))/3;
avg_g = (theta_hat1(3,1) + theta_hat2(3,1) + theta_hat3(3,1))/3;
avgs = [avg_X avg_a avg_g];
avgs = avgs';
all_theta_hats = [theta_hat1 theta_hat2 theta_hat3 avgs]

% all_theta_hats =
% Run 1 Run 2 Run 3 Avg
% -13.4933 -16.7915 -16.7587 -15.6812 X_u
% 0.4445 0.3115 0.1957 0.0793 alpha
% 1.6506 2.6863 3.1466 1.2473 gamma

%a(39) is data for revs
%a(17) is the speed
%Prediction

% Manipulated Values
avg_X = -10.5; % Based on C_D of 0.2
avg_g = 0.05;
avg_a=0.155;
model_u1 = []; model_u2 = []; model_u3 = [];

78

% Run 1 Model
model_u1(1) = a(1,17);
for m = 1:j-1;
 model_u1(m+1) = (z*dt)*((avg_X * model_u1(m) * abs(model_u1(m))) +...
 (avg_a * a(m,39) * abs(a(m,39))) - (avg_g * a(m,39) *...
 abs(model_u1(m)))) + model_u1(m);
 m = m +1;
end
model_u1 = model_u1';

% Run 2 Model
model_u2(1) = b(1,17);
for mm = 1:jj-1;
 model_u2(mm+1) = (z*dt)*((avg_X * model_u2(mm) * abs(model_u2(mm)))+...
 (avg_a * b(mm,39) * abs(b(mm,39))) - (avg_g * b(mm,39) * ...
 abs(model_u2(mm)))) + model_u2(mm);
 mm = mm +1;
end
model_u2 = model_u2';

% Run 3 Model
model_u3(1) = c(1,17);
for mmm = 1:jjj-1;
 model_u3(mmm+1) = (z*dt)*((avg_X * model_u3(mmm) * ...
 abs(model_u3(mmm))) + (avg_a * c(mmm,39) * abs(c(mmm,39))) -...
 (avg_g * c(mmm,39) * abs(model_u3(mmm)))) + model_u3(mmm);
 mmm = mmm +1;
end
model_u3 = model_u3';

figure(1)
orient tall
subplot(3,1,1)
plot(model_u1(:,1))
hold
plot(a(2:j,17), 'r'); grid
legend('Model', 'Actual', 4)
title('Vehicle Speed - Run 1'); xlabel('Time Units');
ylabel('Long. Speed')
hold

subplot(3,1,2)
plot(model_u2(:,1))
hold
plot(b(2:jj,17), 'r'); grid
legend('Model', 'Actual', 4)
title('Vehicle Speed - Run 2'); xlabel('Time Units');
ylabel('Long. Speed')
hold

subplot(3,1,3)
plot(model_u3(:,1))
hold
plot(c(2:jjj,17), 'r'); grid
legend('Model', 'Actual', 4)

79

title('Vehicle Speed - Run 3'); xlabel('Time Units');
ylabel('Long. Speed')
print -tiff -depsc modelplot
hold

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

APPENDIX D. MATLAB FILE FINALRENDEZVOUS.M
This appendix contains the MATLAB code that produces a simulation of a

rendezvous in space and time using a sliding mode control speed controller.
% This is the final program. It adds an updated speed controller based on
% the control law and the longitudinal equation of motion.

% 15 May 2002

whitebg('k');
% State = [v r psi]
clear all
TRUE = 1;
FALSE = 0;

% Converts Degrees to Radians & Radians to Degrees

DegRad = pi/180;
RadDeg = 180/pi;

% State Model Parameters

W = 600.0; % Weight in LB
U = 1.4*3.28; % Forward Speed in ft/s (1.4 m/s)
g = 32.174; % Gravity in ft/sec^2
Boy = 500.0; % Bouyancy ?
xg = 0.125/12.0; % ??
m = W/g; % Mass
rho = 1.9903; % Density of Seawater in slugs/ft^3
L = 10; % Length in ft of ARIES
Iz = (1/12)*m*(1.33^2 + 10^2); % Approx. Using I = 1/12*m*(a^2 + b^2)
% where a is width & b is length
Iz = Iz*5.0;

% Coefficients

Yv_dot = -0.03430*(rho/2)*L^3; % Added Mass in Sway Coefficient.
Yr_dot = -0.00178*(rho/2)*L^4; % Added Mass in Yaw Coefficient.
Yv = -0.10700*(rho/2)*L^2; % Coeff. of Sway Force induced by Side Slip
Yr = 0.01187*(rho/2)*L^3; % Coeff. of Sway Force induced by Yaw
Ydrs = (0.01241*(rho/2)*L^2)/2.0; % Since Bow & Stern Lower Rudders Removed
Ydrb = (0.01241*(rho/2)*L^2)/2.0; % So don't use these equations

Nv_dot = -0.00178*(rho/2)*L^4; % Added Mass Moment of Inertia in Sway Coeff
%Nr_dot = -0.00047*(rho/2)*L^5;
Nr_dot = -Iz; % Added Mass Moment of Inertia in Yaw Coeff
Nv = -0.00769*(rho/2)*L^3; % Coeff. of Sway Moment from Side Slip
Nr = -0.00390*(rho/2)*L^4; % Coeff. of Sway Moment from Yaw
%Ndrs = -2.6496/2.0; % Since Bow & Stern Lower Rudders Removed
%Ndrb = 1.989/2.0;

% Below Modified on 7/12/00 The 3.5 and 3.4167 is the Moment Arm Length
% in Feet - Since Bow & Stern Lower Rudders Removed

82

Ndrs = -0.01241*(rho/2)*(L^2)*(3.5)/2.0;
Ndrb = 0.01241*(rho/2)*(L^2)*(3.4167)/2.0;

% Combining Stern & Bow Rudder Effectivness

Ndr = Ndrs - Ndrb;
Ydr = Ydrs - Ydrb; % Cancel Out

% Matrices

m1 = m - Yv_dot;
m2 = m*xg - Yr_dot;
m3 = m*xg - Nv_dot;
m4 = Iz - Nr_dot;
Y1 = Yv;
Y2 = Yr;
Y3 = U^2*Ydr;
N1 = Nv;
N2 = Nr;
N3 = U^2*Ndr;
A = [Y1*U Y2*U;N1*U N2*U];
B = [Y3 N3]';
M = [m1 m2;m3 m4];
A1 = inv(M)*A;
B1 = inv(M)*B;
AO = [A1(1,1) A1(1,2) 0;
 A1(2,1) A1(2,2) 0;
 0 1 0];
BO = [B1;0];
dt = 0.125;
t = [0:dt:1000]';
size(t);

% Set initial conditions

start=10;
v(1) = 0.0; % Initial Side Slip Velocity
r(1) = 0.0; % Initial Yaw
U(1) = 1.4*3.28; % Initial Forward Speed
rRM(1) = r(1);
psi(1) = 50.0*DegRad; % Initial Heading of ARIES
X(1) = -80.0; % Initial Position in meters
Y(1) = 0.0;
ucom=[];
% Convert to Feet ?

% This data from track.out file for ARIES in Waiting Pattern
% (12 Mar 02)

No_tracks=4; % Sets # of Tracks = # of Rows

Track=[50.0 0.0 2.75 2.75 0 1.25 1.00 0 25.00 8.00 40.00
 50.0 -60.0 2.75 2.75 0 1.25 1.00 0 25.00 8.00 200.00
 -70.0 -60.0 2.75 2.75 0 1.25 1.00 0 25.00 2.00 200.00
 -70.0 0.0 2.75 2.75 0 1.25 1.00 0 25.00 2.00 40.00];

83

track=Track(:,1:2); % Defines track as Track(X,Y)
SurfaceTime = Track(:,9); % Col 9 of Track is Surface Time for Pop-up
SurfPhase = Track(:,8); % Col 8 of Track designates if Pop-up

% This is the REMUS Search Pattern
% 12 Mar 02

Y_REMUS = [200 50 50 200 200 50 50 200 200 50 50 200 200 50];
X_REMUS = [50 50 30 30 10 10 -10 -10 -30 -30 -50 -50 -70 -70];

% Read in way points from track data assumes track is loaded

for j=1:No_tracks,
 X_Way_c(j) = track(j,1);
 Y_Way_c(j) = track(j,2);
end;

% Set start position

PrevX_Way_c(1) = -80.0; % meters
PrevY_Way_c(1) = 00.0; % meters
r_com = 0.0;
W_R = 10.0; % Sets initial Watch Radius (meters)
a = -.3;
b = (9/24)*a;
x(:,1) = [v(1);r(1);psi(1)];

% Below are in British Units for CTE Sliding Mode
%Lam1 = 0.75;
%Lam2 = 0.5;
Lam1 = 2.0;
Lam2 = 1.0;
Eta_FlightHeading = 1.0;
Phi_FlightHeading = 0.5;

% Below for tanh

Eta_CTE = 0.1;
Eta_CTE_Min = 1.0;
Phi_CTE = 0.5;
Uc = [];
Vc = [];
PLOT_PART = 0; disp(sprintf('PLOT_PART = 0'));

% Total Track Length between initial waypoint and waypoint (1) - Eq (10)

SegLen(1) = sqrt((X_Way_c(1)-PrevX_Way_c(1))^2+(Y_Way_c(1)...
 -PrevY_Way_c(1))^2);

% Track Angle of first track - Eq (11)

psi_track(1) = atan2(Y_Way_c(1)-PrevY_Way_c(1),X_Way_c(1)-PrevX_Way_c(1));

% Computes track lengths and track angles for each track

for j=2:No_tracks,

84

 SegLen(j) = sqrt((X_Way_c(j)-X_Way_c(j-1))^2+(Y_Way_c(j)-...
 Y_Way_c(j-1))^2);
 psi_track(j) = atan2(Y_Way_c(j)-Y_Way_c(j-1),X_Way_c(j)-X_Way_c(j-1));
end;
j=1;
Sigma = [];
Depth_com = [];
dr=[];
drl = [];
drl(1) = 0.0;
Depth_com(1) = 5.0;
WayPointVertDist_com = [5.0 5.0 5.0 5.0 5.0];
SURFACE_TIMER_ACTIVE = FALSE;

% Starts a loop that computes values for each data point corresponding to
% a time value (in this case, every 0.125 seconds from 1 to 1000 seconds)

for i=1:length(t)-1,
 Depth_com(i) = WayPointVertDist_com(j);

 % Difference between current vehicle position & the next
 % waypoint Eq(13)

 X_Way_Error(i) = X_Way_c(j) - X(i);
 Y_Way_Error(i) = Y_Way_c(j) - Y(i);

 % DeWrap psi to within +/- 2.0*pi; Makes Heading Angle to lie between
 % 0-360 degrees

 psi_cont(i) = psi(i);
 while(abs(psi_cont(i)) > 2.0*pi)
 psi_cont(i) = psi_cont(i) - sign(psi_cont(i))*2.0*pi;
 end;

 % Cross Track Heading Error Eq(12)

 psi_errorCTE(i) = psi_cont(i) - psi_track(j);

 % DeWrap psi_error to within +/- pi; Normalized to Lie between +/- 180
 % degrees

 while(abs(psi_errorCTE(i)) > pi)
 psi_errorCTE(i) = psi_errorCTE(i) - sign(psi_errorCTE(i))*2.0*pi;
 end;

 % ** Always Calculate this (What is This?)
 Beta = v(i)/U(i);
 % Beta = 0.0;
 cpsi_e = cos(psi_errorCTE(i)+Beta);
 spsi_e = sin(psi_errorCTE(i)+Beta);

 % Distance to the ith way point projected to the track line S(t)i -
 % Eq (14)

 s(i) = [X_Way_Error(i),Y_Way_Error(i)]*[(X_Way_c(j)-...
 PrevX_Way_c(j)),(Y_Way_c(j)-PrevY_Way_c(j))]';

85

 % s is distance to go projected to track line
 % (goes from 0-100%L) - Eq (14)

 s(i) = s(i)/SegLen(j);
 Ratio=(1.0-s(i)/SegLen(j))*100.0; % Ranges from 0-100% of SegLen

 % Radial distance to go to next WP

 ss(i) = sqrt(X_Way_Error(i)^2 + Y_Way_Error(i)^2);

 % dp is angle between line of sight and current track line - Eq (16)

 dp(i) = atan2((Y_Way_c(j)-PrevY_Way_c(j)),(X_Way_c(j)-...
 PrevX_Way_c(j)))- atan2(Y_Way_Error(i),X_Way_Error(i));
 if(dp(i) > pi),
 dp(i) = dp(i) - 2.0*pi;
 end;

 % Cross Track Error Definition - Eq (15)

 cte(i) = s(i)*sin(dp(i));

 % If the magnitude of the CTE Heading exceeds 40 degrees, a LOS
 % Controller is used.

 if(abs(psi_errorCTE(i)) >= 40.0*pi/180.0 | s(i) < 0.0),
 LOS(i) = 1;
 psi_comLOS = atan2(Y_Way_Error(i),X_Way_Error(i)); % Eq (22)
 psi_errorLOS(i) = psi_comLOS - psi_cont(i); % Eq (23)
 % LOS Error
 if(abs(psi_errorLOS(i)) > pi),
 psi_errorLOS(i) = psi_errorLOS(i) - 2.0*pi*psi_errorLOS(i)...
 /abs(psi_errorLOS(i));
 end;

 % Eq (8)

 Sigma_FlightHeading = 0.9499*(r_com - r(i)) + 0.1701*...
 psi_errorLOS(i);

 % Eq (9)

 dr(i) = -1.5435*(2.5394*r(i)+ Eta_FlightHeading*tanh...
 (Sigma_FlightHeading/Phi_FlightHeading));

 else

 % Use CTE Controller if CTE Heading is less than 40 degrees

 LOS(i) = 0;
 if(cpsi_e ~= 0.0), % Trap Div. by Zero !

 % SMC Soln

 % Sliding Surface - Eq (20)

86

 Sigma(i) = U(i)*rRM(i)*cpsi_e + Lam1*U(i)*spsi_e + 3.28*Lam2...
 *cte(i);

 % Rudder Input - Eq (21)

 dr(i) = (1.0/(U(i)*b*cpsi_e))*(-U(i)*a*rRM(i)*cpsi_e + U(i)*...
 rRM(i)^2*spsi_e - Lam1*U(i)*rRM(i)*cpsi_e - Lam2*U(i)*...
 spsi_e - Eta_CTE*(Sigma(i)/Phi_CTE));
 else
 dr(i) = dr(i-1);
 end;
 end; % End of CTE Controller

 % Use LOS if near to loiter point
 % if (loiter==1)& s(i)<10; dr(i)=drlos(i);end;

 % Surface Phase Logic (Independent of LOS or CTE)

 if(SurfPhase(j) == TRUE)
 if(SURFACE_TIMER_ACTIVE == FALSE)
 if(Ratio > 40.0)
 % Start a Timer
 SURFACE_TIMER_ACTIVE = TRUE;
 Depth_com(i) = 0.0;
 SurfaceWait = SurfaceTime(j) + t(i);
 SurfaceWait
 end;
 end;
 end;
 if(SURFACE_TIMER_ACTIVE == TRUE)
 if(t(i) >= SurfaceWait)
 SURFACE_TIMER_ACTIVE = FALSE;
 Depth_com(i) = WayPointVertDist_com(j);
 SurfPhase(j) = 0;
 else
 Depth_com(i) = 0.0;
 end;
 end;
 if(abs(dr(i)) > 0.4)
 dr(i) = 0.4*sign(dr(i));
 end;

 % Model drl is the actual lagged rudder, dr is the rudder command.
 % taudr = 0.255;

 % drl(i+1) = drl(i) + dt*(dr(i)-drl(i))/taudr;
 % if(abs(drl(i)) > 0.4)
 % drl(i) = 0.4*sign(drl(i));
 % end;

 % Jay Johnson Model

 Yv = -68.16;
 Yr = 406.3;
 Ydr = 70.0;

87

 Nv = -10.89;
 Nr = -88.34;
 Ndr = -35.47;

 MY = 456.76;
 IN = 215;

 M = diag([MY,IN,1]);
 AA = [Yv,Yr,0;Nv,Nr,0;0,1,0];
 BB = [Ydr;Ndr;0];
 A = inv(M)*AA;
 B = inv(M)*BB;

 % x_dot(:,i+1) = [A(1,1)*v(i) + A(1,2)*r(i) + B(1)*drl(i);
 % A(2,1)*v(i) + A(2,2)*r(i) + B(2)*drl(i);
 % r(i)];
 x_dot(:,i+1) = [A(1,1)*v(i) + A(1,2)*r(i) + B(1)*dr(i);
 A(2,1)*v(i) + A(2,2)*r(i) + B(2)*dr(i);
 r(i)];

 x(:,i+1) = x(:,i)+dt*x_dot(:,i);
 v(i+1) = x(1,i+1)/12;
 r(i+1) = x(2,i+1);
 U(i+1) = 1.4*3.28; % Constant speed of 2.72 knots
 psi(i+1) = x(3,i+1);
 rRM(i+1) = r(i+1);

 % Added
 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*dr(i));
 % psi(i+1) = psi(i) + dt*rRM(i);

 % Throw in some Waves
 % Uc(i) = -0.5*sin(2*pi*t(i)/5);
 % Vc(i) = 0.5*sin(2*pi*t(i)/5);

 % Model using system ID results from Bay tests

 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*drl(i));
 % psi(i+1) = psi(i) + dt*rRM(i);
 % side slip added proprtional to turn rate from AZORES data V in ft/sec
 % v(i+1) = 1.0*rRM(i+1)*3.28;

 Uc = 0.0;
 Vc = 0.0;

 % Kinematics

 X(i+1) = X(i) + (Uc + (U(i)/3.28)*cos(psi(i)) - v(i)/3.28*sin(psi(i))...
)*dt;
 Y(i+1) = Y(i) + (Vc + (U(i)/3.28)*sin(psi(i)) + v(i)/3.28*cos(psi(i))...
)*dt;

 %**

 % This should abort @ 30 seconds if input is empty or 'Y'
 % This modification done on 05 Feb 2002 - original file is waypoint1.m

88

 if i == 240,
 K = input(...
 'Is Rendezvous Required? (Enter 1 for Yes, 0 for No)-->>');
 if isempty(K)==1; K = 1; break; end;
 if K == 1; break;
 else i = i; end;
 end

 %**

 % Check to See if we are Within the Watch_Radius

 if(sqrt(X_Way_Error(i)^2.0 + Y_Way_Error(i)^2.0) <= W_R | s(i) < 0.0),
 disp(sprintf('WayPoint %d Reached',j));
 if(j==No_tracks),
 PLOT_PART = 1;
 disp(sprintf('PLOT_PART = 1'));
 break;
 end;
 PrevX_Way_c(j+1) = X_Way_c(j);
 PrevY_Way_c(j+1) = Y_Way_c(j);
 j=j+1;
 end;

end; %end of i loop

%**

% Requests Rendezvous Point Information
% This modification done on 05 Feb 2002 - original file waypoint2.m

if j == No_tracks,
 disp(sprintf('Mission Complete'));
else
 new_r_com = 0.0;
 new_v(1) = v(i+1);
 new_r(1) = r(i+1);
 new_rRM(1) = new_r(1);
 new_psi(1) = psi(i+1);
 New_X(1) = X(i+1);
 New_Y(1) = Y(i+1);
 New_No_Tracks = 1;
 New_Track = input('Enter 12 Column Track, i.e., [1 1 ...]-->>');
 new_track = New_Track(:,1:2);
 new_SurfaceTime = New_Track(:,9);
 new_Surfphase = New_Track(:,8);

 %**
 new_U(1) = U(i+1)/3.28; % Sets Initial Rendezvous Speed to 1.4 m/s
 % new_U in meters/sec.
 new_time(1) = New_Track(:,12); % Desired Time to Rendezvous in seconds
 overall_distance_travelled(1) = 0;
 distance_travelled(1) = 0;
 time_used(1) = 0;
 time_remaining(1) = new_time(1);

89

 real_time(1) = 0;
 accel(1) = 0.03; % Sets Acceleration to 0.03 m/s^2
 decel(1) = 0.0249;
 ncom(1) = 12;
 % Sets Deceleration to 0.0249 m/s^2
 %**

 for jj = 1:New_No_Tracks,
 New_X_Way_c(jj) = new_track(jj,1);
 New_Y_Way_c(jj) = new_track(jj,2);
 end;
 New_PrevX_Way_c(1) = X(i+1); % Sets Abort Posit as start of new
 New_PrevY_Way_c(1) = Y(i+1); % track.
 % Below for tanh
 new_Eta_CTE = 0.1;
 new_Eta_CTE_Min = 1.0;
 new_Phi_CTE = 0.5;
 PLOT_PART = 0; disp(sprintf('PLOT_PART = 0'));
 new_x(:,1) = [new_v(1); new_r(1); new_psi(1)];

 % Total Track Length between abort point and rendezvous point

 New_SegLen(1) = sqrt((New_X_Way_c(1)-New_PrevX_Way_c(1))^2+...
 (New_Y_Way_c(1) - New_PrevY_Way_c(1))^2)

 % Track Angle of track between abort point and rendezvous point

 new_psi_track(1) = atan2(New_Y_Way_c(1)-New_PrevY_Way_c(1),...
 New_X_Way_c(1)-New_PrevX_Way_c(1));

 %**
 % Determines if the Mission is Feasible - Can Distance be covered in
 % time required traveling at maximum speed of 3.5 knots or Is time
 % required to be at the rendezvous too much for vehicle travelling at
 % minimum speed of 0.5 knots? (28 Feb 02)
 % Added 10 extra meters to account for curvature of path (14 May 02)

 if new_time > ((New_SegLen(1)+10)/(1.8)) &...
 new_time < ((New_SegLen(1)+10)/(0.2571)),
 disp('Mission Feasible');
 else disp('Mission Not Feasible');
 break; % Ends Simulation if Not Feasible
 end

 %**
 % Determines if there is enough length to achieve deceleration or
 % acceleration - (12 Mar 02)

 decel_Len = abs(((0.2571)^2 - (1.4)^2)/(2*0.0249));
 accel_Len = ((1.8)^2 - (1.4)^2)/(2*0.03);
 time_of_decel = 114; %Time to decel from 1.4 m/s to 0.2571 m/s
 time_left = New_Track(:,12)-time_of_decel;
 distance_remaining = New_SegLen(1)-decel_Len;
 if distance_remaining > 0.2571 * time_left,
 disp('Mission Feasible for Deceleration');
 else disp('Mission Not Feasible for Deceleration');

90

 break;
 end

 %**

 % Starts loop that computes values for each data point corresponding to
 % a time value along new track

 jj=1;
 new_Sigma = [];
 new_Depth_com = [];
 new_dr=[];
 new_drl = []; n = [];
 new_drl(1) = 0.0;
 new_Depth_com(1) = 5.0;
 new_WayPointVertDist_com = [5.0 5.0 5.0 5.0 5.0];
 new_SURFACE_TIMER_ACTIVE = FALSE;
 tt = [t(i+1):dt:3*new_time]';
 size(tt);

 % Start of Loop for Rendezvous Point

 for ii = 1:length(tt)-1,

 new_Depth_com(ii) = new_WayPointVertDist_com(jj);
 New_X_Way_Error(ii) = New_X_Way_c(jj) - New_X(ii);
 New_Y_Way_Error(ii) = New_Y_Way_c(jj) - New_Y(ii);
 new_psi_cont(ii) = new_psi(ii);
 while(abs(new_psi_cont(ii)) > 2.0*pi)
 new_psi_cont(ii) = new_psi_cont(ii) - sign(new_psi_cont(ii))*...
 2.0*pi;
 end;

 % Cross Track Heading Error Eq(12)

 new_psi_errorCTE(ii) = new_psi_cont(ii) - new_psi_track(jj);

 % DeWrap psi_error to within +/- pi; Normalized to Lie between +/-
 % 180 degrees

 while(abs(new_psi_errorCTE(ii)) > pi)
 new_psi_errorCTE(ii) = new_psi_errorCTE(ii) - sign(...
 new_psi_errorCTE(ii))*2.0*pi;
 end;

 % ** Always Calculate this (What is This?)
 new_Beta = new_v(ii)/new_U(ii);
 % Beta = 0.0;
 new_cpsi_e = cos(new_psi_errorCTE(ii)+new_Beta);
 new_spsi_e = sin(new_psi_errorCTE(ii)+new_Beta);

 % Distance to the ith way point projected to the track line S(t)i
 % - Eq (14)

 new_s(ii) = [New_X_Way_Error(ii),New_Y_Way_Error(ii)]*[(...
 New_X_Way_c(jj)-New_PrevX_Way_c(jj)),(New_Y_Way_c(jj)...

91

 -New_PrevY_Way_c(jj))]';
 %**
 % Calculates the Overall Distance Travelled, Distance Travelled,
 % Time Used Overall, Time Remaining, Switches velocity from 0.5
 % knots to 3.5 knots depending on Time Remaining and Distance
 % Remaining while taking into account acceleration/deceleration.
 % (28 Feb 02)

 if ii == 1,
 overall_distance_travelled(ii) = 0;
 distance_travelled(ii) = 0;
 time_used(ii) = 0;
 time_remaining(ii) = new_time(ii);
 real_time(ii) = 0;
 elseif ii == 2,
 overall_distance_travelled(ii) = New_SegLen(ii) - new_s(ii-1);
 distance_travelled(ii) = overall_distance_travelled(ii);
 %time_used(ii) = distance_travelled(ii)/(new_U(ii)/3.28);
 time_remaining(ii) = time_remaining(ii-1)-dt;%time_used(ii);
 real_time(ii) = new_time(ii) - time_remaining(ii);
 else
 overall_distance_travelled(ii) = New_SegLen(ii) - new_s(ii-1);
 distance_travelled(ii) = overall_distance_travelled(ii) -...
 overall_distance_travelled(ii-1);
 time_used(ii) = distance_travelled(ii)/(new_U(ii)/3.28);
 time_remaining(ii) = time_remaining(ii-1) - dt;%time_used(ii);
 real_time(ii) = new_time(ii) - time_remaining(ii);
 end

 % s is distance to go projected to track line(goes from 0-100%L)
 % - Eq (14)

 new_s(ii) = new_s(ii)/New_SegLen(jj);

 if (time_remaining(ii)<0.125), disp('mission out of time'),...
 break,end;

 % Determines what speed to set the vehicle at
 %time_available(ii) = new_s(ii)/(new_U(ii)/3.28);
 ucom(ii)=new_s(ii)/time_remaining(ii);

 if ucom(ii) > 1.8 ;
 ucom(ii) = 1.8 ; % Max velocity is 3.5 Knots
 end
 if ucom(ii) < 0.2571 ;
 ucom(ii) = 0.2571 ; % Min velocity is 0.5 Knots
 end

 %**
 %**
 % New Control Law added for Longitudinal Equation of Motion -
 % 14 May 2002

 new_sigma(ii) = new_U(ii)-ucom(ii);

92

 new_phi(ii) = 0.1;tau=0.1;ncommax=22;

 ncom2(ii) = (1.39*(accel(ii)*0-800*tanh(new_sigma(ii)/...
 new_phi(ii))+67.74*(new_U(ii)*abs(new_U(ii)))));
 ncom(ii)=sqrt(abs(ncom2(ii)))*sign(ncom2(ii));

 % Limits propeller speed to 22 rps

 if (abs(ncom(ii))>ncommax),
 ncom(ii)=ncommax*sign(ncom(ii));
 end;

 % always +ve in these simulations
 % solve longitudinal dynamics

 new_U(ii+1) = (0.004641*dt*(-10.5*(new_U(ii)*abs(new_U(ii)))+...
 0.155*(ncom(ii)*abs(ncom(ii))) - 0.05*ncom(ii)*new_U(ii)))...
 +new_U(ii);

 New_SegLen(ii+1) = New_SegLen(ii);
 new_time(ii+1) = new_time(ii);
 accel(ii+1) = accel(ii);

 %**
 %**

 % Ranges from 0-100% of SegLen

 Ratio=(1.0-new_s(ii)/New_SegLen(jj))*100.0;

 % Radial distance to go to next WP

 new_ss(ii) = sqrt(New_X_Way_Error(ii)^2 + New_Y_Way_Error(ii)^2);

 % dp is angle between line of sight and current track line
 % - Eq (16)

 new_dp(ii) = atan2((New_Y_Way_c(jj)-New_PrevY_Way_c(jj)),(...
 New_X_Way_c(jj)-New_PrevX_Way_c(jj)))- atan2...
 (New_Y_Way_Error(ii),New_X_Way_Error(ii));
 if(new_dp(ii) > pi),
 new_dp(ii) = new_dp(ii) - 2.0*pi;
 end;

 % Cross Track Error Definition - Eq (15)

 new_cte(ii) = new_s(ii)*sin(new_dp(ii));

 % If the magnitude of the CTE Heading exceeds 40 degrees, a
 % LOS Controller is used.

 if(abs(new_psi_errorCTE(ii)) >= 40.0*pi/180.0 | new_s(ii) < 0.0),
 new_LOS(ii) = 1;
 new_psi_comLOS = atan2(New_Y_Way_Error(ii),...
 New_X_Way_Error(ii));
 new_psi_errorLOS(ii) = new_psi_comLOS - new_psi_cont(ii);

93

 if(abs(new_psi_errorLOS(ii)) > pi),
 new_psi_errorLOS(ii) = new_psi_errorLOS(ii) - 2.0*pi*...
 new_psi_errorLOS(ii)/abs(new_psi_errorLOS(ii));
 end;

 % Eq (8)

 new_Sigma_FlightHeading = 0.9499*(new_r_com - new_r(ii)) +...
 0.1701*new_psi_errorLOS(ii);

 % Eq (9)

 new_dr(ii) = -1.5435*(2.5394*new_r(ii)+ Eta_FlightHeading*...
 tanh(new_Sigma_FlightHeading/Phi_FlightHeading));

 else

 % Use CTE Controller if CTE Heading is less than 40 degrees

 new_LOS(ii) = 0;
 if(new_cpsi_e ~= 0.0), % Trap Div. by Zero !

 % SMC Soln

 % Sliding Surface - Eq (20)

 new_Sigma(ii) = new_U(ii)*3.28*new_rRM(ii)*new_cpsi_e...
 + Lam1*new_U(ii)*3.28*new_spsi_e + 3.28*Lam2*...
 new_cte(ii);

 % Rudder Input - Eq (21)

 % new_dr(ii) = (1.0/(new_U(ii)*b*new_cpsi_e))*...
 % (-new_U(ii)*a*new_rRM(ii)*new_cpsi_e + new_U(ii)*...
 % new_rRM(ii)^2*new_spsi_e - Lam1*new_U(ii)*...
 % new_rRM(ii)*new_cpsi_e - Lam2*new_U(ii)*...
 % new_spsi_e -new_Eta_CTE*(new_Sigma(ii)/new_Phi_CTE));
 % changes because new_U is now in m/sec.

 new_dr(ii) = (1.0/(new_U(ii)*3.28*b*new_cpsi_e))*...
 (-new_U(ii)*3.28*a*new_rRM(ii)*new_cpsi_e +...
 new_U(ii)*3.28*new_rRM(ii)^2*new_spsi_e - ...
 Lam1*new_U(ii)*3.28*new_rRM(ii)*new_cpsi_e - ...
 Lam2*new_U(ii)*3.28*new_spsi_e -new_Eta_CTE*...
 (new_Sigma(ii)/new_Phi_CTE));

 else
 new_dr(ii) = new_dr(ii-1);
 end;
 end; % End of CTE Controller

 % Use LOS if near to loiter point
 % if (loiter==1)& new_s(ii)<10; new_dr(ii)=new_drlos(ii);end;

 % Surface Phase Logic (Independent of LOS or CTE)

94

 if(SurfPhase == TRUE)
 if(new_SURFACE_TIMER_ACTIVE == FALSE)
 if(Ratio > 40.0)
 % Start a Timer
 new_SURFACE_TIMER_ACTIVE = TRUE;
 new_Depth_com(ii) = 0.0;
 new_SurfaceWait = new_SurfaceTime(1) + tt(ii);
 new_SurfaceWait
 end;
 end;
 end;
 if(new_SURFACE_TIMER_ACTIVE == TRUE)
 if(tt(ii) >= new_SurfaceWait)
 new_SURFACE_TIMER_ACTIVE = FALSE;
 new_Depth_com(ii) = new_WayPointVertDist_com(1);
 new_SurfPhase(1) = 0;
 else
 new_Depth_com(ii) = 0.0;
 end;
 end;
 if(abs(new_dr(ii)) > 0.4)
 new_dr(ii) = 0.4*sign(new_dr(ii));
 end;

 % Model drl is the actual lagged rudder, dr is the rudder command.
 % taudr = 0.255;

 % drl(i+1) = drl(i) + dt*(dr(i)-drl(i))/taudr;
 % if(abs(drl(i)) > 0.4)
 % drl(i) = 0.4*sign(drl(i));
 % end;
 new_x_dot(:,ii+1) = [A(1,1)*new_v(ii) + A(1,2)*new_r(ii) + B(1)*...
 new_dr(ii); A(2,1)*new_v(ii) + A(2,2)*new_r(ii) + B(2)*...
 new_dr(ii); new_r(ii)];
 new_x(:,ii+1) = new_x(:,ii)+dt*new_x_dot(:,ii);
 new_v(ii+1) = new_x(1,ii+1)/12;
 new_r(ii+1) = new_x(2,ii+1);
 new_psi(ii+1) = new_x(3,ii+1);
 new_rRM(ii+1) = new_r(ii+1);

 % Added
 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*dr(i));
 % psi(i+1) = psi(i) + dt*rRM(i);

 % Throw in some Waves
 % Uc(i) = -0.5*sin(2*pi*t(i)/5);
 % Vc(i) = 0.5*sin(2*pi*t(i)/5);

 % Model using system ID results from Bay tests

 % rRM(i+1) = rRM(i) + dt*(a*rRM(i) + b*drl(i));
 % psi(i+1) = psi(i) + dt*rRM(i);
 % side slip added proprtional to turn rate from AZORES data V in
 % ft/sec
 % v(i+1) = 1.0*rRM(i+1)*3.28;

95

 Uc = 0.0;
 Vc = 0.0;

 % Kinematics note new_U is in meters /sec, new_v is in ft/sec
 % hold over from long time ago

 New_X(ii+1) = New_X(ii) + (Uc + (new_U(ii))*cos(new_psi(ii)) -...
 new_v(ii)/3.28*sin(new_psi(ii)))*dt;
 New_Y(ii+1) = New_Y(ii) + (Vc + (new_U(ii))*sin(new_psi(ii))...
 + new_v(ii)/3.28*cos(new_psi(ii)))*dt;

 % Check to See if we are Within the Watch_Radius (set to 1
 % meter here)

 if(sqrt(New_X_Way_Error(ii)^2.0 + New_Y_Way_Error(ii)^2.0)...
 <= 1 | new_s(ii) < 0.0),

 % Next Line ends mission if within Watch Radius.

 disp(sprintf('Rendezvous Point Reached')); break;
 if(jj==No_tracks),
 PLOT_PART = 2;
 disp(sprintf('PLOT_PART = 2'));
 break;
 end;
 New_PrevX_Way_c(jj+1) = New_X_Way_c(jj);
 New_PrevY_Way_c(jj+1) = New_Y_Way_c(jj);
 end
 end %end of ii loop
end % if j=No_Tracks
%**

% Plotting

if PLOT_PART == 1,

 % Plot of Time vs Rudder Angle & Vehicle Heading

 figure(1); clf
 orient tall
 plot(t([1:i+1]),psi*180/pi);
 hold;
 plot(t([1:i+1]),dr*180/pi,'r:');grid;
 title('Time vs Rudder Angle and Vehicle Heading');
 xlabel('Time (sec)'); ylabel('Rudder Angle/Vehicle Heading (degrees)');
 legend('Vehicle Heading', 'Rudder Angle');
 print -tiff -depsc figure1_wp5
 hold;zoom on;

 % Plot of Time vs CTE, Distance to Go to Projected Track, Radial
 % Distance to Next Waypoint

 figure(2); clf
 orient tall
 plot(t([1:i+1]),cte);
 hold;

96

 plot(t([1:i+1]),s,'r:');
 plot(t([1:i+1]),ss,'g--');grid;
 title('Time vs Cross Track Error')
 xlabel('Time (sec)');ylabel('Distance (meters)');
 legend('Cross Track Error', 'Distance to Go Projected to Track', ...
 'Radial Distance to Go to Next Way Point');
 print -tiff -depsc figure2_wp5
 hold;zoom on;

 %***************
 figure(3); clf
 orient tall
 plot(t([1:i+1]),U); grid;
 title('Time vs Forward Speed')
 xlabel('Time (sec)'); ylabel('Forward Speed (m/s)');
 %***************

elseif PLOT_PART == 0,

 % Plot of Time vs Rudder Angle & Vehicle Heading for Rendezvous Mission

 figure(4); clf
 orient tall
 plot(t([1:i+1]),psi*180/pi, 'g');
 hold;
 plot(real_time([1:ii])+30,new_psi([1:ii])*180/pi, 'g:');
 plot(t([1:i]),dr*180/pi,'r');
 plot(real_time([1:ii-1])+30,new_dr([1:ii-1])*180/pi, 'r:');
 title('Time vs Rudder Angle and Vehicle Heading');
 xlabel('Time (sec)'); ylabel('Rudder Angle/Vehicle Heading (degrees)');
 legend('Vehicle Heading Before Mission Abort',...
 'Vehicle Heading After Mission Abort',...
 'Rudder Angle Before Mission Abort',...
 'Rudder Angle After Mission Abort');
 print -tiff -depsc figure4_wp5
 hold;grid;

 % Plot of Time vs CTE, Distance to Go to Projected Track, Radial
 % Distance to Next Waypoint for Rendezvous Mission

 figure(5); clf
 orient tall
 plot(t([1:i]), cte, 'g');
 hold;
 plot(real_time([1:ii-1])+30, new_cte([1:ii-1]), 'g:');
 plot(t([1:i]), s,'r');
 plot(real_time([1:ii-1])+30, new_s([1:ii-1]), 'r:');
 plot(t([1:i-1]), ss([1:i-1]),'b');grid;
 plot(real_time([1:ii-1])+30, new_ss([1:ii-1]), 'b:');
 title('Time vs Cross Track Error')
 xlabel('Time (sec)'); ylabel('Distance (meters)');
 legend('Cross Track Error Before Abort',...
 'Cross Track Error After Abort',...
 'Distance to Go Projected to Track Before Abort', ...
 'Distance to Go Projected to Track After Abort',...
 'Radial Distance to Go to Next Way Point Before Abort',...

97

 'Radial Distance to Go to Next Way Point After Abort');
 print -tiff -depsc figure5_wp5
 hold;zoom on;
 %***************
 figure(6); clf
 orient tall
% subplot(1,2,1) % In order to produce Figure 17 in thesis
 plot(t([1:i+1]),U/3.28, 'b*');
 hold;
 plot(real_time([1:ii-1])+30,new_U([1:ii-1]),'r.',...
 real_time([1:ii-1])+30,ucom([1:ii-1]),'m'); grid;
 % AXIS([0 30+new_time(1) 0 2]);
 title('Time vs Forward Speed')
 xlabel('Time (sec)'); ylabel('Forward Speed (m/s)');
 legend('Original Speed', 'Rendezvous Speed', 'Command Speed');
 hold;
% In order to produce Figure 17 in thesis
% subplot(1,2,2)
% plot(real_time(1:ii)+30, ncom(1:ii),'b.'); grid
% title('Propeller Speed')
% xlabel('Time (sec)'); ylabel('Propeller Speed (rps)')
% axis([30 100 12 22])
 print -tiff -depsc figure6_wp5

 % 3-D Plot

 figure(7); clf
 orient tall
 plot3(Y, X, t([1:i+1]), 'b'); grid;
 title('Time Space Plot')
 xlabel('Y (meters)');
 ylabel('X (meters)');
 zlabel('Time (seconds)');
 hold;
 plot3(New_Y([1:ii]), New_X([1:ii]), real_time([1:ii])+30, 'rx');
 plot3(New_Y_Way_c, New_X_Way_c, new_time(ii)+30, 'gd');
 legend('Original Track', 'New Track', 'Rendezvous')
 print -tiff -depsc figure7_wp5
 hold;

 % figure(8); clf
 % orient tall
 % plot(t([1:i+1]),X, 'r');
 % hold;
 % plot(real_time([1:ii])+30, New_X([1:ii]),'r:');
 % plot(t([1:i+1]), Y, 'g');
 % plot(real_time([1:ii])+30, New_Y([1:ii]),'g:'); grid;
 % title('Time vs Postition');
 % xlabel('Time (sec)'); ylabel('Position (meters)');
 % legend('Original X', 'Rendezvous X', 'Original Y',...
 % 'Rendezvous Y',2);
 % hold;

 %***************
end;

98

% Plot of Actual Track and Planned Track
% Modified on 05 Feb 2002 - To include waypoint2.m modifications.

if PLOT_PART == 1,
 figure(9); clf
 orient tall
 plot(Y,X,'b--');grid; % Actual Track
 title('ARIES Track - Actual and Planned');
 xlabel('Y (meters)');ylabel('X (meters)');
 hold;

 % Planned Track
 plot([Y_Way_c(1) PrevY_Way_c(1)],[X_Way_c(1) PrevX_Way_c(1)],'r');
 plot(Y_REMUS, X_REMUS, 'g');
 axis([-100 220 -120 60]);
 for ik=2:No_tracks,
 plot([Y_Way_c(ik) Y_Way_c(ik-1)],[X_Way_c(ik)...
 X_Way_c(ik-1)],'r');
 end;
 legend('Actual Track - ARIES', 'Planned Track - ARIES',...
 'REMUS Path',4);
 print -tiff -depsc figure9_wp5
 hold; zoom on

elseif PLOT_PART == 0 | PLOT_PART == 2,

 % Plot of Planned Track, Track after Mission Change, Rendezvous
 % Point and Initial Track

 figure(10); clf
 orient tall
 plot(Y,X,'b--');grid;
 title('ARIES Track - Actual and Planned');
 xlabel('Y (meters)');ylabel('X (meters)');
 hold;
 plot(New_Y, New_X,'g-.');
 plot(New_Y_Way_c, New_X_Way_c,'gd');
 plot(Y_REMUS, X_REMUS, 'm');
 plot([Y_Way_c(1) PrevY_Way_c(1)],[X_Way_c(1) PrevX_Way_c(1)],'r');
 for ik=2:No_tracks,
 plot([Y_Way_c(ik) Y_Way_c(ik-1)],[X_Way_c(ik)...
 X_Way_c(ik-1)],'r');
 end;
 legend('Initial Track - ARIES',...
 'Track After Modem Command - ARIES','Rendezvous Point',...
 'REMUS Track','Planned Track - ARIES',4);
 axis([-100 220 -120 60]);

 % AXIS([-100 250 -80 60])
 print -tiff -depsc figure10_wp5
 hold; zoom on
end

99

LIST OF REFERENCES

Cox, I.J. and G.T. Wilfong (ed.), Autonomous Robot Vehicles, Springer-Verlag, New
York, 1990.

Faiz, Nadeem and Sunil Agrawal, “Trajectory Planning of Differentially Flat Systems
with Dynamics and Inequalities,” Journal of Guidance, Control, and Dynamics, vol. 24,
no. 2, pp. 219-227, Mar-Apr 2001.

Fourquet, Jean-Yves and Marc Renaud, “Time-Optimal Motions for a Torque Controlled
Wheeled Mobile Robot Along Specified Paths,” Proceedings of the 35th Conference on
Decision and Control, pp. 3587-3592, Dec 1996.

Fraichard, Th., “Dynamic Trajectory Planning with Dynamic Constraints: a ‘State-Time
Space’ Approach,” Proceedings of the 1993 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1393-1400, Jul 1993.

Fraichard, Th and A. Scheuer, “Car-Like Robots and Moving Obstacles,” 1994 IEEE
International Conference on Robotics and Automation, pp. 64-69, 1998.

Gelb, A., [and others], Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974.

Hanselman, Duane and Bruce Littlefield, Mastering MATLAB, Prentice-Hall, Upper
Saddle River, NJ, 1996.

Healey, A.J., Dynamics of Marine Vehicles (ME-4823), Class Notes, Naval Postgraduate
School, Monterey, CA, 1995.

Healey, A. J., “Command and Control Demonstrations with Cooperating Vehicles,” ONR
Research Proposal in response to ONR BAA 01-012 “Demonstration of Undersea
Autonomous Operation Capabilities and Related Technology Development”, August
2001.

Healey, A.J. and David Lienard, “Multivariable Sliding Mode Control for Autonomous
Diving and Steering of Unmanned Underwater Vehicles,” IEEE Journal of Oceanic
Engineering, vol. 18, pp 327-339, Jul 1993.

Johnson, Jay, “Parameter Identification of the ARIES AUV,” M.S. Thesis Naval
Postgraduate School, Monterey, CA, June 2001.

Kanayama, Yutaka and Bruce I. Hartman, “Smooth Local Path Planning for Autonomous
Vehicles,” Autonomous Robot Vehicles, Springer-Verlag, New York, 1990, pp. 62-67.

Kant, Kamal and Steven Zucker, “Toward Efficient Trajectory Planning: The Path-
Velocity Decomposition,” The International Journal of Robotics Research, vol. 5, no. 3,
pp. 72-89, Fall 1986.

100

Lamb, H., Sir, Hydrodynamics by Sir Horace Lamb, New York: Dover Publications,
1945.

Lewis, E.V. (ed.), Principles of Naval Architecture, vol. II, second revision, Society of
Naval Architects and Marine Engineers (SNAME), Jersey City, NJ, 1988.

Lienard, David, “Autopilot Design for Autonomous Underwater Vehicles Based on
Sliding Mode Control,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, June
1990.

Lopez, Ismael and Colin McInnes, “Autonomous Rendezvous Using Artificial Potential
Function Guidance,” Journal of Guidance, Control and Dynamics, vol. 18, no. 2, pp.
237-241, Mar-Apr 1995.

Marco, D.B., “Procedure to Run Missions with the ARIES,” Personal Notes, 2001.

Marco, D.B. and A.J. Healey, “Current Developments in Underwater Vehicle Control
and Navigation,” Proceedings of IEEE Oceans, 2000.

Marco, D.B and A.J. Healey, “Command, Control and Navigation Experimental Results
With the NPS ARIES AUV,” IEEE Journal of Oceanic Engineering – Special Issue,
2001.

Munoz, V.F. [and others], “Speed Planning Method for Mobile Robots Under Motion
Constraints,” IFAC Intelligent Autonomous Vehicles, pp. 123-128, 1998.

Munoz, V.F. and A. Garcia-Cerezo, “Speed Planning and Generation Approach Based on
the Path-Time Space for Mobile Robots,” Proceedings of the 1998 IEEE International
Conference on Robotics and Automation, pp. 2199-2204, May 1998.

Nelson, W.L. and I.J. Cox, “Local Path Control for an Autonomous Vehicle,”
Autonomous Robot Vehicles, Springer-Verlag, New York, 1990, pp. 38-44.

Reidel, Jeffrey, “Seaway Learning and Motion Compensation in Shallow Waters for
Small AUVs,” Doctoral Dissertation, Naval Postgraduate School, Monterey, CA, June
1999.

Sabin, William A., The Gregg Reference Manual, McGraw-Hill, New York, 1992.

Sasiadek, Jerzy and Igancy Duleba, “3D Local Trajectory Planner,” AIAA Guidance,
Navigation and Control Conference Collection of Technical Papers, pp. 517-526, 1997.

Shiller, Z. and W. Serate, “Trajectory Planning of Tracked Vehicles,” Journal of
Dynamic Systems, Measurement, and Control, vol 117, pp 619-624, Dec 1995.

101

Tecnadyne Corporation, Model 520 Dimensions, Configuration and Specifications,
www.tecnadyne.com/thrusters.htm.

Wang, Danwei and Feng Qi, “Trajectory Planning for a Four-Wheel-Steering Vehicle,”
Proceedings of the 2001 IEEE International Conference on Robotics & Automation, pp.
3320-3325, May 2001.

Weiguo, Wang, Chen Huitang and Woo Peng-Yung, “Optimal Motion Planning for a
Wheeled Mobile Robot,” Proceedings of the 1999 IEEE International Conference on
Robotics and Automation, pp. 41-46, May 1999.

White, F.M., ‘Fluid Mechanics,” McGraw-Hill, Boston, MA, 1999.

102

THIS PAGE INTENTIONALLY LEFT BLANK

103

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, VA

2. Dudley Knox Library
 Naval Postgraduate School

Monterey, CA

3. Mechanical Engineering Department Chairman, Code ME
 Naval Postgraduate School

Monterey, CA

4. Naval/Mechanical Engineering Curriculum Code 34
 Naval Postgraduate School

Monterey, CA

5. Professor Anthony J. Healey, Code ME/HY
 Department of Mechanical Engineering

Naval Postgraduate School
 Monterey, CA

6. Dr. Donald Brutzman, Code UW/Br
 Undersea Warfare Group

Naval Postgraduate School
 Monterey, CA

7. Dr. T. B. Curtin, Code 322OM
 Office of Naval Research

Arlington, VA

8. Dr. T. Swean, Code 32OE
Office of Naval Research
Arlington, VA

9. LCDR John J. Keegan

Supervisor of Shipbuilding
Pascagoula, MS

10. Mr. John J. Keegan III

Chesapeake, VA

11. LT Joe Keller
Naval Postgraduate School
Monterey, CA

104

12. LT Lynn Fodrea

Naval Postgraduate School
Monterey, CA

13. CDR A.B. Fuller, USN (Ret.)

Washington, DC

14. CDR T.M. Negus

Washington, DC

